id ftunivnantes:oai:HAL:insu-03579674v1
record_format openpolar
spelling ftunivnantes:oai:HAL:insu-03579674v1 2023-05-15T15:00:49+02:00 Erosion of organic carbon in the Arctic as a geological carbon dioxide sink Hilton, Robert G. Galy, Valier Gaillardet, Jérôme Dellinger, Mathieu Bryant, Charlotte O'Regan, Matt Gröcke, Darren R. Coxall, Helen Bouchez, Julien Calmels, Damien Institut de Physique du Globe de Paris (IPGP) Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS) Interactions et dynamique des environnements de surface (IDES) Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) 2015 https://hal-insu.archives-ouvertes.fr/insu-03579674 https://doi.org/10.1038/nature14653 en eng HAL CCSD Nature Publishing Group info:eu-repo/semantics/altIdentifier/doi/10.1038/nature14653 insu-03579674 https://hal-insu.archives-ouvertes.fr/insu-03579674 BIBCODE: 2015Natur.524.84H doi:10.1038/nature14653 ISSN: 0028-0836 EISSN: 1476-4687 Nature https://hal-insu.archives-ouvertes.fr/insu-03579674 Nature, 2015, 524, pp.84-87. ⟨10.1038/nature14653⟩ [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2015 ftunivnantes https://doi.org/10.1038/nature14653 2023-02-08T03:10:56Z International audience Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO 2 ) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO 2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 +/- 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of teragrams of carbon per year from the Mackenzie River, which is three times the CO 2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO 2 sink. Article in Journal/Newspaper Arctic Arctic Ocean Mackenzie river permafrost Université de Nantes: HAL-UNIV-NANTES Arctic Arctic Ocean Mackenzie River Nature 524 7563 84 87
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Hilton, Robert G.
Galy, Valier
Gaillardet, Jérôme
Dellinger, Mathieu
Bryant, Charlotte
O'Regan, Matt
Gröcke, Darren R.
Coxall, Helen
Bouchez, Julien
Calmels, Damien
Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Soils of the northern high latitudes store carbon over millennial timescales (thousands of years) and contain approximately double the carbon stock of the atmosphere. Warming and associated permafrost thaw can expose soil organic carbon and result in mineralization and carbon dioxide (CO 2 ) release. However, some of this soil organic carbon may be eroded and transferred to rivers. If it escapes degradation during river transport and is buried in marine sediments, then it can contribute to a longer-term (more than ten thousand years), geological CO 2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers at high latitudes remains poorly constrained. Here, we quantify the source of POC in the Mackenzie River, the main sediment supplier to the Arctic Ocean, and assess its flux and fate. We combine measurements of radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. Our samples reveal that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5,800 +/- 800 years, much older than the POC in large tropical rivers. From the measured biospheric POC content and variability in annual sediment yield, we calculate a biospheric POC flux of teragrams of carbon per year from the Mackenzie River, which is three times the CO 2 drawdown by silicate weathering in this basin. Offshore, we find evidence for efficient terrestrial organic carbon burial over the Holocene period, suggesting that erosion of organic carbon-rich, high-latitude soils may result in an important geological CO 2 sink.
author2 Institut de Physique du Globe de Paris (IPGP)
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Interactions et dynamique des environnements de surface (IDES)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Hilton, Robert G.
Galy, Valier
Gaillardet, Jérôme
Dellinger, Mathieu
Bryant, Charlotte
O'Regan, Matt
Gröcke, Darren R.
Coxall, Helen
Bouchez, Julien
Calmels, Damien
author_facet Hilton, Robert G.
Galy, Valier
Gaillardet, Jérôme
Dellinger, Mathieu
Bryant, Charlotte
O'Regan, Matt
Gröcke, Darren R.
Coxall, Helen
Bouchez, Julien
Calmels, Damien
author_sort Hilton, Robert G.
title Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
title_short Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
title_full Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
title_fullStr Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
title_full_unstemmed Erosion of organic carbon in the Arctic as a geological carbon dioxide sink
title_sort erosion of organic carbon in the arctic as a geological carbon dioxide sink
publisher HAL CCSD
publishDate 2015
url https://hal-insu.archives-ouvertes.fr/insu-03579674
https://doi.org/10.1038/nature14653
geographic Arctic
Arctic Ocean
Mackenzie River
geographic_facet Arctic
Arctic Ocean
Mackenzie River
genre Arctic
Arctic Ocean
Mackenzie river
permafrost
genre_facet Arctic
Arctic Ocean
Mackenzie river
permafrost
op_source ISSN: 0028-0836
EISSN: 1476-4687
Nature
https://hal-insu.archives-ouvertes.fr/insu-03579674
Nature, 2015, 524, pp.84-87. ⟨10.1038/nature14653⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/nature14653
insu-03579674
https://hal-insu.archives-ouvertes.fr/insu-03579674
BIBCODE: 2015Natur.524.84H
doi:10.1038/nature14653
op_doi https://doi.org/10.1038/nature14653
container_title Nature
container_volume 524
container_issue 7563
container_start_page 84
op_container_end_page 87
_version_ 1766332875070767104