Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity
International audience Large proportions of rain water and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The...
Published in: | Hydrological Processes |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal-insu.archives-ouvertes.fr/insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125/document https://hal-insu.archives-ouvertes.fr/insu-02529125/file/hyp.13753.pdf https://doi.org/10.1002/hyp.13753 |
id |
ftunivnantes:oai:HAL:insu-02529125v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
subsurface discharge groundwater age stratification groundwater recharge CFCs subsurface hydrological connectivity hillslope storage Boussinesq equations Krycklan [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology |
spellingShingle |
subsurface discharge groundwater age stratification groundwater recharge CFCs subsurface hydrological connectivity hillslope storage Boussinesq equations Krycklan [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology Kolbe, Tamara Marçais, Jean de Dreuzy, Jean-Raynald Labasque, Thierry Bishop, Kevin Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
topic_facet |
subsurface discharge groundwater age stratification groundwater recharge CFCs subsurface hydrological connectivity hillslope storage Boussinesq equations Krycklan [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology |
description |
International audience Large proportions of rain water and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time varying processes. CFC‐based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from 9 different wells with depths of 2 m to 18 m close to the stream network. Immediately below the water table, CFC‐based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age‐depth relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity. |
author2 |
Swedish University of Agricultural Sciences (SLU) Technishe Universität Bergakademie Freiberg (TU Bergakademie Freiberg) Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Riverly (Riverly) Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Géosciences Rennes (GR) Université de Rennes 1 (UR1)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes 1 (UR1)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes 1 (UR1)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Swedisch University of Agricultural Sciences, Department of Aquatic Sciences and Assessment |
format |
Article in Journal/Newspaper |
author |
Kolbe, Tamara Marçais, Jean de Dreuzy, Jean-Raynald Labasque, Thierry Bishop, Kevin |
author_facet |
Kolbe, Tamara Marçais, Jean de Dreuzy, Jean-Raynald Labasque, Thierry Bishop, Kevin |
author_sort |
Kolbe, Tamara |
title |
Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
title_short |
Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
title_full |
Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
title_fullStr |
Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
title_full_unstemmed |
Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
title_sort |
lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal-insu.archives-ouvertes.fr/insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125/document https://hal-insu.archives-ouvertes.fr/insu-02529125/file/hyp.13753.pdf https://doi.org/10.1002/hyp.13753 |
genre |
Northern Sweden |
genre_facet |
Northern Sweden |
op_source |
ISSN: 0885-6087 EISSN: 1099-1085 Hydrological Processes https://hal-insu.archives-ouvertes.fr/insu-02529125 Hydrological Processes, 2020, 34 (10), pp.2176-2189. ⟨10.1002/hyp.13753⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1002/hyp.13753 insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125/document https://hal-insu.archives-ouvertes.fr/insu-02529125/file/hyp.13753.pdf doi:10.1002/hyp.13753 WOS: 000530491800002 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1002/hyp.13753 |
container_title |
Hydrological Processes |
container_volume |
34 |
container_issue |
10 |
container_start_page |
2176 |
op_container_end_page |
2189 |
_version_ |
1766147768076730368 |
spelling |
ftunivnantes:oai:HAL:insu-02529125v1 2023-05-15T17:45:03+02:00 Lagged rejuvenation of groundwater indicates internal flow structures and hydrological connectivity Kolbe, Tamara Marçais, Jean de Dreuzy, Jean-Raynald Labasque, Thierry Bishop, Kevin Swedish University of Agricultural Sciences (SLU) Technishe Universität Bergakademie Freiberg (TU Bergakademie Freiberg) Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Riverly (Riverly) Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Géosciences Rennes (GR) Université de Rennes 1 (UR1)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes 1 (UR1)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS) Observatoire des Sciences de l'Univers de Rennes (OSUR) Université de Rennes 1 (UR1)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Swedisch University of Agricultural Sciences, Department of Aquatic Sciences and Assessment 2020-05-15 https://hal-insu.archives-ouvertes.fr/insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125/document https://hal-insu.archives-ouvertes.fr/insu-02529125/file/hyp.13753.pdf https://doi.org/10.1002/hyp.13753 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1002/hyp.13753 insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125 https://hal-insu.archives-ouvertes.fr/insu-02529125/document https://hal-insu.archives-ouvertes.fr/insu-02529125/file/hyp.13753.pdf doi:10.1002/hyp.13753 WOS: 000530491800002 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 0885-6087 EISSN: 1099-1085 Hydrological Processes https://hal-insu.archives-ouvertes.fr/insu-02529125 Hydrological Processes, 2020, 34 (10), pp.2176-2189. ⟨10.1002/hyp.13753⟩ subsurface discharge groundwater age stratification groundwater recharge CFCs subsurface hydrological connectivity hillslope storage Boussinesq equations Krycklan [SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/Hydrology info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1002/hyp.13753 2023-03-08T04:44:56Z International audience Large proportions of rain water and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time varying processes. CFC‐based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from 9 different wells with depths of 2 m to 18 m close to the stream network. Immediately below the water table, CFC‐based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age‐depth relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity. Article in Journal/Newspaper Northern Sweden Université de Nantes: HAL-UNIV-NANTES Hydrological Processes 34 10 2176 2189 |