A statistical method to model non-stationarity in precipitation records changes
International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records,...
Main Authors: | , , , |
---|---|
Other Authors: | , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2023
|
Subjects: | |
Online Access: | https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf |
id |
ftunivnantes:oai:HAL:hal-04006516v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivnantes:oai:HAL:hal-04006516v1 2023-05-15T17:33:09+02:00 A statistical method to model non-stationarity in precipitation records changes Gonzalez, Paula Naveau, Philippe Thao, Soulivanh Worms, Julien Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) FRAISE-LEFE/INSU 80 PRIME CNRS-INSU ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020) ANR-19-CE46-0011,MeLODy,Bridging geohysics and MachinE Learning for the modeling, simulation and reconstruction of Ocean DYnamics(2019) European Project: 101003469,XAIDA 2023 https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf en eng HAL CCSD American Geophysical Union info:eu-repo/grantAgreement//101003469/EU/eXtreme events : Artificial Intelligence for Detection and Attribution/XAIDA hal-04006516 https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf info:eu-repo/semantics/OpenAccess ISSN: 0094-8276 EISSN: 1944-8007 Geophysical Research Letters https://hal.science/hal-04006516 Geophysical Research Letters, In press Extreme event attribution Climate extreme events Detection & attribution Precipitation [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2023 ftunivnantes 2023-03-08T00:46:51Z International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records, key indicators of climate change that spark media attention and research in the EEA community. Although they deserve a specific statistical treatment, algorithms tailored to record analysis are lacking. This is particularly true in a non-stationarity context. This work aims at filling this methodological gap by focusing on records in transient climate simulations. We apply our methodology to study records of yearly maxima of daily precipitation issued from numerical climate model IPSL-CM6A-LR. Illustrating our approach with decadal records, we detect in 2023 a clear human induced signal in half of the globe, with probability mostly increasing, but decreasing in the south and north Atlantic oceans Article in Journal/Newspaper North Atlantic Université de Nantes: HAL-UNIV-NANTES |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
Extreme event attribution Climate extreme events Detection & attribution Precipitation [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences |
spellingShingle |
Extreme event attribution Climate extreme events Detection & attribution Precipitation [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences Gonzalez, Paula Naveau, Philippe Thao, Soulivanh Worms, Julien A statistical method to model non-stationarity in precipitation records changes |
topic_facet |
Extreme event attribution Climate extreme events Detection & attribution Precipitation [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] [SDU.STU]Sciences of the Universe [physics]/Earth Sciences |
description |
International audience In the context of climate change, assessing how likely a particular change or event has been caused by human influence is important for mitigation and adaptation policies. In this work we propose an extreme event attribution (EEA) methodology to analyze yearly maxima records, key indicators of climate change that spark media attention and research in the EEA community. Although they deserve a specific statistical treatment, algorithms tailored to record analysis are lacking. This is particularly true in a non-stationarity context. This work aims at filling this methodological gap by focusing on records in transient climate simulations. We apply our methodology to study records of yearly maxima of daily precipitation issued from numerical climate model IPSL-CM6A-LR. Illustrating our approach with decadal records, we detect in 2023 a clear human induced signal in half of the globe, with probability mostly increasing, but decreasing in the south and north Atlantic oceans |
author2 |
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Extrèmes : Statistiques, Impacts et Régionalisation (ESTIMR) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Laboratoire de Mathématiques de Versailles (LMV) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) FRAISE-LEFE/INSU 80 PRIME CNRS-INSU ANR-20-CE40-0025,T-REX,nouveaux challenges pour la prédiction des extremes et sa validation(2020) ANR-19-CE46-0011,MeLODy,Bridging geohysics and MachinE Learning for the modeling, simulation and reconstruction of Ocean DYnamics(2019) European Project: 101003469,XAIDA |
format |
Article in Journal/Newspaper |
author |
Gonzalez, Paula Naveau, Philippe Thao, Soulivanh Worms, Julien |
author_facet |
Gonzalez, Paula Naveau, Philippe Thao, Soulivanh Worms, Julien |
author_sort |
Gonzalez, Paula |
title |
A statistical method to model non-stationarity in precipitation records changes |
title_short |
A statistical method to model non-stationarity in precipitation records changes |
title_full |
A statistical method to model non-stationarity in precipitation records changes |
title_fullStr |
A statistical method to model non-stationarity in precipitation records changes |
title_full_unstemmed |
A statistical method to model non-stationarity in precipitation records changes |
title_sort |
statistical method to model non-stationarity in precipitation records changes |
publisher |
HAL CCSD |
publishDate |
2023 |
url |
https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf |
genre |
North Atlantic |
genre_facet |
North Atlantic |
op_source |
ISSN: 0094-8276 EISSN: 1944-8007 Geophysical Research Letters https://hal.science/hal-04006516 Geophysical Research Letters, In press |
op_relation |
info:eu-repo/grantAgreement//101003469/EU/eXtreme events : Artificial Intelligence for Detection and Attribution/XAIDA hal-04006516 https://hal.science/hal-04006516 https://hal.science/hal-04006516/document https://hal.science/hal-04006516/file/Paula_article_Hal.pdf |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1766131561196945408 |