Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems

International audience The aircraft conflict detection and resolution problem has been addressed with a wide range of centralised methods in the past few decades, e.g. constraint programming, mathematical programming or metaheuristics. In the context of autonomous, decentralized collision avoidance...

Full description

Bibliographic Details
Main Authors: Alligier, Richard, Gianazza, David, Durand, Nicolas, Olive, Xavier
Other Authors: Ecole Nationale de l'Aviation Civile (ENAC), Algorithmes Parallèles et Optimisation (IRIT-APO), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées, Direction Générale de l'Aviation Civile (DGAC), ONERA / DTIS, Université de Toulouse Toulouse, ONERA-PRES Université de Toulouse
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal-enac.archives-ouvertes.fr/hal-03948501
https://hal-enac.archives-ouvertes.fr/hal-03948501/document
https://hal-enac.archives-ouvertes.fr/hal-03948501/file/main.pdf
id ftunivnantes:oai:HAL:hal-03948501v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Collision avoidance
Aircraft conflict resolution
Self-separation
Optimal reciprocal collision avoidance
Air traffic control
Unmanned airborne systems
Collision Avoidance aircraft conflict resolution self-separation Optimal Reciprocal Collision Avoidance Air Traffic Control Unmanned Airborne Systems
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
spellingShingle Collision avoidance
Aircraft conflict resolution
Self-separation
Optimal reciprocal collision avoidance
Air traffic control
Unmanned airborne systems
Collision Avoidance aircraft conflict resolution self-separation Optimal Reciprocal Collision Avoidance Air Traffic Control Unmanned Airborne Systems
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
Alligier, Richard
Gianazza, David
Durand, Nicolas
Olive, Xavier
Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems
topic_facet Collision avoidance
Aircraft conflict resolution
Self-separation
Optimal reciprocal collision avoidance
Air traffic control
Unmanned airborne systems
Collision Avoidance aircraft conflict resolution self-separation Optimal Reciprocal Collision Avoidance Air Traffic Control Unmanned Airborne Systems
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]
[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO]
description International audience The aircraft conflict detection and resolution problem has been addressed with a wide range of centralised methods in the past few decades, e.g. constraint programming, mathematical programming or metaheuristics. In the context of autonomous, decentralized collision avoidance without explicit coordination, geometric methods provide an elegant, cost-effective approach to avoid collisions between mobile agents, provided they all share a same logic and a same view of the traffic. The Optimal Reciprocal Collision Avoidance (ORCA) algorithm is a state-of-the art geometric method for robot collision avoidance, which can be used as a Detect & Avoid logic on-board aircraft or Unmanned Aerial Vehicles. However, ORCA does not handle well some degenerate situations where agents operate at constant or near-constant speeds, which is a widespread feature of commercial aircraft or fixed-winged Unmanned Airborne Systems. In such degenerate situations, pairs of aircraft could end up flying parallel tracks without ever crossing paths to reach their respective destination. The Constant Speed ORCA (CS-ORCA) was proposed in 2018 to better handle these situations. In this paper, we discuss the limitations of both ORCA and CS-ORCA, and introduce the Dual-Horizon ORCA (DH-ORCA) algorithm, where two time horizons are used respectively for short-term collision avoidance and medium-term path-crossing. We show that this new approach mitigates the main issues of ORCA and CS-ORCA and yields better performances with dense traffic scenarios.
author2 Ecole Nationale de l'Aviation Civile (ENAC)
Algorithmes Parallèles et Optimisation (IRIT-APO)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse Capitole (UT Capitole)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Toulouse Mind & Brain Institut (TMBI)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole)
Université Fédérale Toulouse Midi-Pyrénées
Direction Générale de l'Aviation Civile (DGAC)
ONERA / DTIS, Université de Toulouse Toulouse
ONERA-PRES Université de Toulouse
format Article in Journal/Newspaper
author Alligier, Richard
Gianazza, David
Durand, Nicolas
Olive, Xavier
author_facet Alligier, Richard
Gianazza, David
Durand, Nicolas
Olive, Xavier
author_sort Alligier, Richard
title Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems
title_short Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems
title_full Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems
title_fullStr Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems
title_full_unstemmed Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems
title_sort dual-horizon reciprocal collision avoidance for aircraft and unmanned aerial systems
publisher HAL CCSD
publishDate 2022
url https://hal-enac.archives-ouvertes.fr/hal-03948501
https://hal-enac.archives-ouvertes.fr/hal-03948501/document
https://hal-enac.archives-ouvertes.fr/hal-03948501/file/main.pdf
genre Orca
genre_facet Orca
op_source ISSN: 0921-0296
EISSN: 1573-0409
Journal of Intelligent and Robotic Systems
https://hal-enac.archives-ouvertes.fr/hal-03948501
Journal of Intelligent and Robotic Systems, 2022, 107 (1)
op_relation hal-03948501
https://hal-enac.archives-ouvertes.fr/hal-03948501
https://hal-enac.archives-ouvertes.fr/hal-03948501/document
https://hal-enac.archives-ouvertes.fr/hal-03948501/file/main.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766160716331483136
spelling ftunivnantes:oai:HAL:hal-03948501v1 2023-05-15T17:52:57+02:00 Dual-Horizon Reciprocal Collision Avoidance for Aircraft and Unmanned Aerial Systems Alligier, Richard Gianazza, David Durand, Nicolas Olive, Xavier Ecole Nationale de l'Aviation Civile (ENAC) Algorithmes Parallèles et Optimisation (IRIT-APO) Institut de recherche en informatique de Toulouse (IRIT) Université Toulouse Capitole (UT Capitole) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) Université Fédérale Toulouse Midi-Pyrénées-Toulouse Mind & Brain Institut (TMBI) Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole) Université Fédérale Toulouse Midi-Pyrénées Direction Générale de l'Aviation Civile (DGAC) ONERA / DTIS, Université de Toulouse Toulouse ONERA-PRES Université de Toulouse 2022-12 https://hal-enac.archives-ouvertes.fr/hal-03948501 https://hal-enac.archives-ouvertes.fr/hal-03948501/document https://hal-enac.archives-ouvertes.fr/hal-03948501/file/main.pdf en eng HAL CCSD Springer Verlag hal-03948501 https://hal-enac.archives-ouvertes.fr/hal-03948501 https://hal-enac.archives-ouvertes.fr/hal-03948501/document https://hal-enac.archives-ouvertes.fr/hal-03948501/file/main.pdf info:eu-repo/semantics/OpenAccess ISSN: 0921-0296 EISSN: 1573-0409 Journal of Intelligent and Robotic Systems https://hal-enac.archives-ouvertes.fr/hal-03948501 Journal of Intelligent and Robotic Systems, 2022, 107 (1) Collision avoidance Aircraft conflict resolution Self-separation Optimal reciprocal collision avoidance Air traffic control Unmanned airborne systems Collision Avoidance aircraft conflict resolution self-separation Optimal Reciprocal Collision Avoidance Air Traffic Control Unmanned Airborne Systems [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] [INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] info:eu-repo/semantics/article Journal articles 2022 ftunivnantes 2023-03-08T00:56:41Z International audience The aircraft conflict detection and resolution problem has been addressed with a wide range of centralised methods in the past few decades, e.g. constraint programming, mathematical programming or metaheuristics. In the context of autonomous, decentralized collision avoidance without explicit coordination, geometric methods provide an elegant, cost-effective approach to avoid collisions between mobile agents, provided they all share a same logic and a same view of the traffic. The Optimal Reciprocal Collision Avoidance (ORCA) algorithm is a state-of-the art geometric method for robot collision avoidance, which can be used as a Detect & Avoid logic on-board aircraft or Unmanned Aerial Vehicles. However, ORCA does not handle well some degenerate situations where agents operate at constant or near-constant speeds, which is a widespread feature of commercial aircraft or fixed-winged Unmanned Airborne Systems. In such degenerate situations, pairs of aircraft could end up flying parallel tracks without ever crossing paths to reach their respective destination. The Constant Speed ORCA (CS-ORCA) was proposed in 2018 to better handle these situations. In this paper, we discuss the limitations of both ORCA and CS-ORCA, and introduce the Dual-Horizon ORCA (DH-ORCA) algorithm, where two time horizons are used respectively for short-term collision avoidance and medium-term path-crossing. We show that this new approach mitigates the main issues of ORCA and CS-ORCA and yields better performances with dense traffic scenarios. Article in Journal/Newspaper Orca Université de Nantes: HAL-UNIV-NANTES