The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons

International audience Abstract. The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼34 million years ago (Ma) and lasting ∼790 kyr. The change is m...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Hutchinson, David, Coxall, Helen, Lunt, Daniel, Steinthorsdottir, Margret, de Boer, Agatha, Baatsen, Michiel, von der Heydt, Anna, Huber, Matthew, Kennedy-Asser, Alan, Kunzmann, Lutz, Ladant, Jean-Baptiste, Lear, Caroline, Moraweck, Karolin, Pearson, Paul, Piga, Emanuela, Pound, Matthew, Salzmann, Ulrich, Scher, Howie, Sijp, Willem, Śliwińska, Kasia, Wilson, Paul, Zhang, Zhongshi
Other Authors: Department of Geological Sciences and Bolin Centre for Climate Research, Stockholm University, School of Geographical Sciences Bristol, University of Bristol Bristol, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modélisation du climat (CLIM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.science/hal-03844708
https://hal.science/hal-03844708/document
https://hal.science/hal-03844708/file/cp-17-269-2021.pdf
https://doi.org/10.5194/cp-17-269-2021
id ftunivnantes:oai:HAL:hal-03844708v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
spellingShingle [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
Hutchinson, David
Coxall, Helen
Lunt, Daniel
Steinthorsdottir, Margret
de Boer, Agatha
Baatsen, Michiel
von der Heydt, Anna
Huber, Matthew
Kennedy-Asser, Alan
Kunzmann, Lutz
Ladant, Jean-Baptiste
Lear, Caroline
Moraweck, Karolin
Pearson, Paul
Piga, Emanuela
Pound, Matthew
Salzmann, Ulrich
Scher, Howie
Sijp, Willem
Śliwińska, Kasia
Wilson, Paul
Zhang, Zhongshi
The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
topic_facet [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
description International audience Abstract. The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼34 million years ago (Ma) and lasting ∼790 kyr. The change is marked by a global shift in deep-sea δ18O representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate-adapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (∼325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data–model comparison should be considered an upper estimate and perhaps ...
author2 Department of Geological Sciences and Bolin Centre for Climate Research
Stockholm University
School of Geographical Sciences Bristol
University of Bristol Bristol
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Modélisation du climat (CLIM)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Hutchinson, David
Coxall, Helen
Lunt, Daniel
Steinthorsdottir, Margret
de Boer, Agatha
Baatsen, Michiel
von der Heydt, Anna
Huber, Matthew
Kennedy-Asser, Alan
Kunzmann, Lutz
Ladant, Jean-Baptiste
Lear, Caroline
Moraweck, Karolin
Pearson, Paul
Piga, Emanuela
Pound, Matthew
Salzmann, Ulrich
Scher, Howie
Sijp, Willem
Śliwińska, Kasia
Wilson, Paul
Zhang, Zhongshi
author_facet Hutchinson, David
Coxall, Helen
Lunt, Daniel
Steinthorsdottir, Margret
de Boer, Agatha
Baatsen, Michiel
von der Heydt, Anna
Huber, Matthew
Kennedy-Asser, Alan
Kunzmann, Lutz
Ladant, Jean-Baptiste
Lear, Caroline
Moraweck, Karolin
Pearson, Paul
Piga, Emanuela
Pound, Matthew
Salzmann, Ulrich
Scher, Howie
Sijp, Willem
Śliwińska, Kasia
Wilson, Paul
Zhang, Zhongshi
author_sort Hutchinson, David
title The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_short The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_full The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_fullStr The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_full_unstemmed The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
title_sort eocene–oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons
publisher HAL CCSD
publishDate 2021
url https://hal.science/hal-03844708
https://hal.science/hal-03844708/document
https://hal.science/hal-03844708/file/cp-17-269-2021.pdf
https://doi.org/10.5194/cp-17-269-2021
genre Antarc*
Antarctica
Ice Sheet
genre_facet Antarc*
Antarctica
Ice Sheet
op_source ISSN: 1814-9324
EISSN: 1814-9332
Climate of the Past
https://hal.science/hal-03844708
Climate of the Past, 2021, 17 (1), pp.269-315. ⟨10.5194/cp-17-269-2021⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-17-269-2021
hal-03844708
https://hal.science/hal-03844708
https://hal.science/hal-03844708/document
https://hal.science/hal-03844708/file/cp-17-269-2021.pdf
doi:10.5194/cp-17-269-2021
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/cp-17-269-2021
container_title Climate of the Past
container_volume 17
container_issue 1
container_start_page 269
op_container_end_page 315
_version_ 1766272387061383168
spelling ftunivnantes:oai:HAL:hal-03844708v1 2023-05-15T14:02:14+02:00 The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons Hutchinson, David Coxall, Helen Lunt, Daniel Steinthorsdottir, Margret de Boer, Agatha Baatsen, Michiel von der Heydt, Anna Huber, Matthew Kennedy-Asser, Alan Kunzmann, Lutz Ladant, Jean-Baptiste Lear, Caroline Moraweck, Karolin Pearson, Paul Piga, Emanuela Pound, Matthew Salzmann, Ulrich Scher, Howie Sijp, Willem Śliwińska, Kasia Wilson, Paul Zhang, Zhongshi Department of Geological Sciences and Bolin Centre for Climate Research Stockholm University School of Geographical Sciences Bristol University of Bristol Bristol Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Modélisation du climat (CLIM) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) 2021 https://hal.science/hal-03844708 https://hal.science/hal-03844708/document https://hal.science/hal-03844708/file/cp-17-269-2021.pdf https://doi.org/10.5194/cp-17-269-2021 en eng HAL CCSD European Geosciences Union (EGU) info:eu-repo/semantics/altIdentifier/doi/10.5194/cp-17-269-2021 hal-03844708 https://hal.science/hal-03844708 https://hal.science/hal-03844708/document https://hal.science/hal-03844708/file/cp-17-269-2021.pdf doi:10.5194/cp-17-269-2021 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 1814-9324 EISSN: 1814-9332 Climate of the Past https://hal.science/hal-03844708 Climate of the Past, 2021, 17 (1), pp.269-315. ⟨10.5194/cp-17-269-2021⟩ [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology info:eu-repo/semantics/article Journal articles 2021 ftunivnantes https://doi.org/10.5194/cp-17-269-2021 2023-02-08T02:12:57Z International audience Abstract. The Eocene–Oligocene transition (EOT) was a climate shift from a largely ice-free greenhouse world to an icehouse climate, involving the first major glaciation of Antarctica and global cooling occurring ∼34 million years ago (Ma) and lasting ∼790 kyr. The change is marked by a global shift in deep-sea δ18O representing a combination of deep-ocean cooling and growth in land ice volume. At the same time, multiple independent proxies for ocean temperature indicate sea surface cooling, and major changes in global fauna and flora record a shift toward more cold-climate-adapted species. The two principal suggested explanations of this transition are a decline in atmospheric CO2 and changes to ocean gateways, while orbital forcing likely influenced the precise timing of the glaciation. Here we review and synthesise proxy evidence of palaeogeography, temperature, ice sheets, ocean circulation and CO2 change from the marine and terrestrial realms. Furthermore, we quantitatively compare proxy records of change to an ensemble of climate model simulations of temperature change across the EOT. The simulations compare three forcing mechanisms across the EOT: CO2 decrease, palaeogeographic changes and ice sheet growth. Our model ensemble results demonstrate the need for a global cooling mechanism beyond the imposition of an ice sheet or palaeogeographic changes. We find that CO2 forcing involving a large decrease in CO2 of ca. 40 % (∼325 ppm drop) provides the best fit to the available proxy evidence, with ice sheet and palaeogeographic changes playing a secondary role. While this large decrease is consistent with some CO2 proxy records (the extreme endmember of decrease), the positive feedback mechanisms on ice growth are so strong that a modest CO2 decrease beyond a critical threshold for ice sheet initiation is well capable of triggering rapid ice sheet growth. Thus, the amplitude of CO2 decrease signalled by our data–model comparison should be considered an upper estimate and perhaps ... Article in Journal/Newspaper Antarc* Antarctica Ice Sheet Université de Nantes: HAL-UNIV-NANTES Climate of the Past 17 1 269 315