Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis

International audience Non-stationary extreme value analysis is a powerful framework to address the problem of time evolution of extremes and its link to climate variability as measured by different climate indices CI (like North Atlantic Oscillation NAO index). To model extreme sea levels (ESLs), a...

Full description

Bibliographic Details
Published in:Weather and Climate Extremes
Main Authors: Rohmer, Jérémy, Thiéblemont, Rémi, Le Cozannet, Gonéri
Other Authors: Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal-brgm.archives-ouvertes.fr/hal-03745523
https://hal-brgm.archives-ouvertes.fr/hal-03745523/document
https://hal-brgm.archives-ouvertes.fr/hal-03745523/file/1-s2.0-S2212094721000451-main%20%281%29.pdf
https://doi.org/10.1016/j.wace.2021.100352
id ftunivnantes:oai:HAL:hal-03745523v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-03745523v1 2023-05-15T17:33:59+02:00 Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis Rohmer, Jérémy Thiéblemont, Rémi Le Cozannet, Gonéri Bureau de Recherches Géologiques et Minières (BRGM) (BRGM) 2021-07-06 https://hal-brgm.archives-ouvertes.fr/hal-03745523 https://hal-brgm.archives-ouvertes.fr/hal-03745523/document https://hal-brgm.archives-ouvertes.fr/hal-03745523/file/1-s2.0-S2212094721000451-main%20%281%29.pdf https://doi.org/10.1016/j.wace.2021.100352 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.wace.2021.100352 hal-03745523 https://hal-brgm.archives-ouvertes.fr/hal-03745523 https://hal-brgm.archives-ouvertes.fr/hal-03745523/document https://hal-brgm.archives-ouvertes.fr/hal-03745523/file/1-s2.0-S2212094721000451-main%20%281%29.pdf doi:10.1016/j.wace.2021.100352 info:eu-repo/semantics/OpenAccess ISSN: 2212-0947 Weather and Climate Extremes https://hal-brgm.archives-ouvertes.fr/hal-03745523 Weather and Climate Extremes, Elsevier, 2021, 33, pp.100352. ⟨10.1016/j.wace.2021.100352⟩ [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2021 ftunivnantes https://doi.org/10.1016/j.wace.2021.100352 2022-08-09T23:34:46Z International audience Non-stationary extreme value analysis is a powerful framework to address the problem of time evolution of extremes and its link to climate variability as measured by different climate indices CI (like North Atlantic Oscillation NAO index). To model extreme sea levels (ESLs), a widely-used tool is the non-stationary Generalized Extreme Value distribution (GEV) where the parameters (location, scale and shape) are allowed to vary as a function of some covariates like the month-of-year or some CIs. A commonly used assumption is that only a few CIs impact the GEV parameters by using a linear model, and most of the time by focusing on two GEV parameters (location or/and the scale parameter). In the present study, these assumptions are revisited by relying on a datadriven spline-based GEV fitting approach combined with a penalization procedure. This allows identifying the type (non-or linear) of the CI influence for any of the three GEV parameters directly from the data, and evaluating the significance of this relation, i.e. without making any a priori assumptions as it is traditionally done. This approach is applied to the monthly maxima of sea levels derived from eight of the longest (quasi centurylong) tide gauge dataset ( Article in Journal/Newspaper North Atlantic North Atlantic oscillation Université de Nantes: HAL-UNIV-NANTES Weather and Climate Extremes 33 100352
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
spellingShingle [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
Rohmer, Jérémy
Thiéblemont, Rémi
Le Cozannet, Gonéri
Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
topic_facet [SDU.STU]Sciences of the Universe [physics]/Earth Sciences
description International audience Non-stationary extreme value analysis is a powerful framework to address the problem of time evolution of extremes and its link to climate variability as measured by different climate indices CI (like North Atlantic Oscillation NAO index). To model extreme sea levels (ESLs), a widely-used tool is the non-stationary Generalized Extreme Value distribution (GEV) where the parameters (location, scale and shape) are allowed to vary as a function of some covariates like the month-of-year or some CIs. A commonly used assumption is that only a few CIs impact the GEV parameters by using a linear model, and most of the time by focusing on two GEV parameters (location or/and the scale parameter). In the present study, these assumptions are revisited by relying on a datadriven spline-based GEV fitting approach combined with a penalization procedure. This allows identifying the type (non-or linear) of the CI influence for any of the three GEV parameters directly from the data, and evaluating the significance of this relation, i.e. without making any a priori assumptions as it is traditionally done. This approach is applied to the monthly maxima of sea levels derived from eight of the longest (quasi centurylong) tide gauge dataset (
author2 Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)
format Article in Journal/Newspaper
author Rohmer, Jérémy
Thiéblemont, Rémi
Le Cozannet, Gonéri
author_facet Rohmer, Jérémy
Thiéblemont, Rémi
Le Cozannet, Gonéri
author_sort Rohmer, Jérémy
title Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
title_short Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
title_full Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
title_fullStr Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
title_full_unstemmed Revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
title_sort revisiting the link between extreme sea levels and climate variability using a spline-based non-stationary extreme value analysis
publisher HAL CCSD
publishDate 2021
url https://hal-brgm.archives-ouvertes.fr/hal-03745523
https://hal-brgm.archives-ouvertes.fr/hal-03745523/document
https://hal-brgm.archives-ouvertes.fr/hal-03745523/file/1-s2.0-S2212094721000451-main%20%281%29.pdf
https://doi.org/10.1016/j.wace.2021.100352
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source ISSN: 2212-0947
Weather and Climate Extremes
https://hal-brgm.archives-ouvertes.fr/hal-03745523
Weather and Climate Extremes, Elsevier, 2021, 33, pp.100352. ⟨10.1016/j.wace.2021.100352⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.wace.2021.100352
hal-03745523
https://hal-brgm.archives-ouvertes.fr/hal-03745523
https://hal-brgm.archives-ouvertes.fr/hal-03745523/document
https://hal-brgm.archives-ouvertes.fr/hal-03745523/file/1-s2.0-S2212094721000451-main%20%281%29.pdf
doi:10.1016/j.wace.2021.100352
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.wace.2021.100352
container_title Weather and Climate Extremes
container_volume 33
container_start_page 100352
_version_ 1766132657772560384