A strong mitigation scenario maintains climate neutrality of northern peatlands

International audience Northern peatlands store 300–600 Pg C, of which approximately half are underlain by permafrost. Climate warming and, in some regions, soil drying from enhanced evaporation are progressively threatening this large carbon stock. Here, we assess future CO2 and CH4 fluxes from nor...

Full description

Bibliographic Details
Published in:One Earth
Main Authors: Qiu, Chunjing, Ciais, Philippe, Zhu, Dan, Guenet, Bertrand, Chang, Jinfeng, Chaudhary, Nitin, Kleinen, Thomas, Li, Xinyu, Müller, Jurek, Xi, yi, Zhang, Wenxin, Ballantyne, Ashley P., Brewer, Simon C., Brovkin, Victor, Charman, Dan J., Gustafson, Adrian, Gallego-Sala, Angela V., Gasser, Thomas, Holden, Joseph, Joos, Fortunat, Kwon, Min-Jung, Lauerwald, Ronny, Miller, Paul A., Peng, Shushi, Page, Susan, Smith, Benjamin, Stocker, Benjamin David, Sannel, Anna Britta Kristina, Salmon, Elodie, Schurgers, Guy, Shurpali, Narasinha J., Wårlind, David, Westermann, Sebastian
Other Authors: Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Mathématiques et Informatique Appliquées (MIA Paris-Saclay), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University Beijing, Laboratoire de géologie de l'ENS (LGENS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), European Research Council, ERC: SyG-2013-610028 IMBALANCE-P; Agence Nationale de la Recherche, ANR, This work was supported by the European Research Council Synergy grant (SyG-2013-610028 IMBALANCE-P) and the French State Aid managed by the ANR under the ?Investissements d'avenir? programme (ANR-16-CONV-0003_Cland). ORCHIDEE-PEAT performed simulations using HPC resources from GENCI-TGCC (2020-A0070106328). A.V.G.-S. was funded by the Natural Environment Research Council (NERC standard grant no. NE/I012915/1 and no. NE/S001166/1). W.Z. acknowledges funding from the Swedish Research Council FORMAS 2016-01201 and Swedish National Space Agency 209/19. N.C. acknowledges funding by the Nunataryuk (EU grant agreement no. 773421) and the Swedish Research Council FORMAS (contract no. 2019-01151). LPJ-GUESS_dyn simulations were performed on the supercomputing facilities at the University of Oslo, Norway, and on the Aurora and Tetralith resources of the Swedish National Infrastructure for Computing (SNIC) at the Lund University Centre for Scientific and Technical Computing (Lunarc), project no. 2021/2-61 and no. 2021/2-28, and Link?ping University, project no. snic2020/5-563. A.G. P.A.M. W.Z. B.S. D.W. and N.C. acknowledge support from the strategic research areas Modeling the Regional and Global Earth System (MERGE) and Biodiversity and Ecosystem Services in a Changing Climate (BECC) at Lund University. P.A.M. and D.W. received financial support from the H2020 CRESCENDO project (grant agreement no. 641816). LPJ-GUESS simulations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC partially funded by the Swedish Research Council through grant agreement no. 2018-05973. J.M. and F.J. acknowledge financial support by the Swiss National Science Foundation (no. 200020_172476 and no. 200020_200511) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 820989 (project COMFORT) and no. 821003 (project 4C). The work reflects only the authors views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. B.G. received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 641816 (CRESCENDO) and no. 821003 (4C project). B.D.S was funded by the Swiss National Science Foundation grant no. PCEFP2_181115. T.K. acknowledges support from the German Federal Ministry for Education and Research (BMBF) through the PalMod programme (grant no. 01LP1507B and no. 01LP1921A). LPJ-MPI experiments were performed at the German Climate Computing Centre (DKRZ), using resources from the Max Planck Institute for Meteorology. N.J.S. acknowledges financial support from Academy of Finland (no. 296887 and no. 334422) and the Finnish Ministry of Agriculture and Forestry (no. VN/28562/2020). J.C. acknowledged support from the Fundamental Research Funds for the Central Universities (no. 2021QNA6005). D.Z. acknowledges funding from the National Natural Science Foundation of China (grant no. 42101090 and no. 41988101). W.Z and G.S. acknowledge support from the Danish National Research Foundation (DNRF100). C.Q. P.C. D.Z. and B.G. designed the research; C.Q. and P.C. drafted the manuscript; J.C. prepared the climate forcing for ORCHIDEE-PEAT and computed estimates of global and Northern Hemisphere CO2 emissions from ISIMIP2b terrestrial biosphere models; C.Q. N.C. T.K. X.Y.L. J.M. Y.X. and W.Z. performed model simulations; A.V.G.-S. and S.C.B. provided estimates for future peat carbon sink from Gallego-Sala 15; all authors contributed to the interpretation of the results and draft revision., ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016), European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03554166
https://hal.archives-ouvertes.fr/hal-03554166/document
https://hal.archives-ouvertes.fr/hal-03554166/file/PIIS2590332221007260.pdf
https://doi.org/10.1016/j.oneear.2021.12.008
id ftunivnantes:oai:HAL:hal-03554166v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic carbon dioxide
carbon-cycle feedback
land surface models
long-term climate change
methane
peatland
permafrost
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDE.MCG]Environmental Sciences/Global Changes
spellingShingle carbon dioxide
carbon-cycle feedback
land surface models
long-term climate change
methane
peatland
permafrost
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDE.MCG]Environmental Sciences/Global Changes
Qiu, Chunjing
Ciais, Philippe
Zhu, Dan
Guenet, Bertrand
Chang, Jinfeng
Chaudhary, Nitin
Kleinen, Thomas
Li, Xinyu
Müller, Jurek
Xi, yi
Zhang, Wenxin
Ballantyne, Ashley P.
Brewer, Simon C.
Brovkin, Victor
Charman, Dan J.
Gustafson, Adrian
Gallego-Sala, Angela V.
Gasser, Thomas
Holden, Joseph
Joos, Fortunat
Kwon, Min-Jung
Lauerwald, Ronny
Miller, Paul A.
Peng, Shushi
Page, Susan
Smith, Benjamin
Stocker, Benjamin David
Sannel, Anna Britta Kristina
Salmon, Elodie
Schurgers, Guy
Shurpali, Narasinha J.
Wårlind, David
Westermann, Sebastian
A strong mitigation scenario maintains climate neutrality of northern peatlands
topic_facet carbon dioxide
carbon-cycle feedback
land surface models
long-term climate change
methane
peatland
permafrost
[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology
[SDE.MCG]Environmental Sciences/Global Changes
description International audience Northern peatlands store 300–600 Pg C, of which approximately half are underlain by permafrost. Climate warming and, in some regions, soil drying from enhanced evaporation are progressively threatening this large carbon stock. Here, we assess future CO2 and CH4 fluxes from northern peatlands using five land surface models that explicitly include representation of peatland processes. Under Representative Concentration Pathways (RCP) 2.6, northern peatlands are projected to remain a net sink of CO2 and climate neutral for the next three centuries. A shift to a net CO2 source and a substantial increase in CH4 emissions are projected under RCP8.5, which could exacerbate global warming by 0.21°C (range, 0.09–0.49°C) by the year 2300. The true warming impact of peatlands might be higher owing to processes not simulated by the models and direct anthropogenic disturbance. Our study highlights the importance of understanding how future warming might trigger high carbon losses from northern peatlands.
author2 Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Mathématiques et Informatique Appliquées (MIA Paris-Saclay)
AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences
Peking University Beijing
Laboratoire de géologie de l'ENS (LGENS)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS)
European Research Council, ERC: SyG-2013-610028 IMBALANCE-P; Agence Nationale de la Recherche, ANR
This work was supported by the European Research Council Synergy grant (SyG-2013-610028 IMBALANCE-P) and the French State Aid managed by the ANR under the ?Investissements d'avenir? programme (ANR-16-CONV-0003_Cland). ORCHIDEE-PEAT performed simulations using HPC resources from GENCI-TGCC (2020-A0070106328). A.V.G.-S. was funded by the Natural Environment Research Council (NERC standard grant no. NE/I012915/1 and no. NE/S001166/1). W.Z. acknowledges funding from the Swedish Research Council FORMAS 2016-01201 and Swedish National Space Agency 209/19. N.C. acknowledges funding by the Nunataryuk (EU grant agreement no. 773421) and the Swedish Research Council FORMAS (contract no. 2019-01151). LPJ-GUESS_dyn simulations were performed on the supercomputing facilities at the University of Oslo, Norway, and on the Aurora and Tetralith resources of the Swedish National Infrastructure for Computing (SNIC) at the Lund University Centre for Scientific and Technical Computing (Lunarc), project no. 2021/2-61 and no. 2021/2-28, and Link?ping University, project no. snic2020/5-563. A.G. P.A.M. W.Z. B.S. D.W. and N.C. acknowledge support from the strategic research areas Modeling the Regional and Global Earth System (MERGE) and Biodiversity and Ecosystem Services in a Changing Climate (BECC) at Lund University. P.A.M. and D.W. received financial support from the H2020 CRESCENDO project (grant agreement no. 641816). LPJ-GUESS simulations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC partially funded by the Swedish Research Council through grant agreement no. 2018-05973. J.M. and F.J. acknowledge financial support by the Swiss National Science Foundation (no. 200020_172476 and no. 200020_200511) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 820989 (project COMFORT) and no. 821003 (project 4C). The work reflects only the authors views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. B.G. received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 641816 (CRESCENDO) and no. 821003 (4C project). B.D.S was funded by the Swiss National Science Foundation grant no. PCEFP2_181115. T.K. acknowledges support from the German Federal Ministry for Education and Research (BMBF) through the PalMod programme (grant no. 01LP1507B and no. 01LP1921A). LPJ-MPI experiments were performed at the German Climate Computing Centre (DKRZ), using resources from the Max Planck Institute for Meteorology. N.J.S. acknowledges financial support from Academy of Finland (no. 296887 and no. 334422) and the Finnish Ministry of Agriculture and Forestry (no. VN/28562/2020). J.C. acknowledged support from the Fundamental Research Funds for the Central Universities (no. 2021QNA6005). D.Z. acknowledges funding from the National Natural Science Foundation of China (grant no. 42101090 and no. 41988101). W.Z and G.S. acknowledge support from the Danish National Research Foundation (DNRF100). C.Q. P.C. D.Z. and B.G. designed the research; C.Q. and P.C. drafted the manuscript; J.C. prepared the climate forcing for ORCHIDEE-PEAT and computed estimates of global and Northern Hemisphere CO2 emissions from ISIMIP2b terrestrial biosphere models; C.Q. N.C. T.K. X.Y.L. J.M. Y.X. and W.Z. performed model simulations; A.V.G.-S. and S.C.B. provided estimates for future peat carbon sink from Gallego-Sala 15; all authors contributed to the interpretation of the results and draft revision.
ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016)
European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015)
format Article in Journal/Newspaper
author Qiu, Chunjing
Ciais, Philippe
Zhu, Dan
Guenet, Bertrand
Chang, Jinfeng
Chaudhary, Nitin
Kleinen, Thomas
Li, Xinyu
Müller, Jurek
Xi, yi
Zhang, Wenxin
Ballantyne, Ashley P.
Brewer, Simon C.
Brovkin, Victor
Charman, Dan J.
Gustafson, Adrian
Gallego-Sala, Angela V.
Gasser, Thomas
Holden, Joseph
Joos, Fortunat
Kwon, Min-Jung
Lauerwald, Ronny
Miller, Paul A.
Peng, Shushi
Page, Susan
Smith, Benjamin
Stocker, Benjamin David
Sannel, Anna Britta Kristina
Salmon, Elodie
Schurgers, Guy
Shurpali, Narasinha J.
Wårlind, David
Westermann, Sebastian
author_facet Qiu, Chunjing
Ciais, Philippe
Zhu, Dan
Guenet, Bertrand
Chang, Jinfeng
Chaudhary, Nitin
Kleinen, Thomas
Li, Xinyu
Müller, Jurek
Xi, yi
Zhang, Wenxin
Ballantyne, Ashley P.
Brewer, Simon C.
Brovkin, Victor
Charman, Dan J.
Gustafson, Adrian
Gallego-Sala, Angela V.
Gasser, Thomas
Holden, Joseph
Joos, Fortunat
Kwon, Min-Jung
Lauerwald, Ronny
Miller, Paul A.
Peng, Shushi
Page, Susan
Smith, Benjamin
Stocker, Benjamin David
Sannel, Anna Britta Kristina
Salmon, Elodie
Schurgers, Guy
Shurpali, Narasinha J.
Wårlind, David
Westermann, Sebastian
author_sort Qiu, Chunjing
title A strong mitigation scenario maintains climate neutrality of northern peatlands
title_short A strong mitigation scenario maintains climate neutrality of northern peatlands
title_full A strong mitigation scenario maintains climate neutrality of northern peatlands
title_fullStr A strong mitigation scenario maintains climate neutrality of northern peatlands
title_full_unstemmed A strong mitigation scenario maintains climate neutrality of northern peatlands
title_sort strong mitigation scenario maintains climate neutrality of northern peatlands
publisher HAL CCSD
publishDate 2022
url https://hal.archives-ouvertes.fr/hal-03554166
https://hal.archives-ouvertes.fr/hal-03554166/document
https://hal.archives-ouvertes.fr/hal-03554166/file/PIIS2590332221007260.pdf
https://doi.org/10.1016/j.oneear.2021.12.008
genre permafrost
genre_facet permafrost
op_source ISSN: 2590-3322
One Earth
https://hal.archives-ouvertes.fr/hal-03554166
One Earth, Cell press, 2022, 5 (1), pp.86-97. ⟨10.1016/j.oneear.2021.12.008⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.oneear.2021.12.008
info:eu-repo/grantAgreement//641816/EU/Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach/CRESCENDO
hal-03554166
https://hal.archives-ouvertes.fr/hal-03554166
https://hal.archives-ouvertes.fr/hal-03554166/document
https://hal.archives-ouvertes.fr/hal-03554166/file/PIIS2590332221007260.pdf
doi:10.1016/j.oneear.2021.12.008
op_rights http://creativecommons.org/licenses/by-nc-nd/
info:eu-repo/semantics/OpenAccess
op_rightsnorm CC-BY-NC-ND
op_doi https://doi.org/10.1016/j.oneear.2021.12.008
container_title One Earth
container_volume 5
container_issue 1
container_start_page 86
op_container_end_page 97
_version_ 1766165712977526784
spelling ftunivnantes:oai:HAL:hal-03554166v1 2023-05-15T17:57:19+02:00 A strong mitigation scenario maintains climate neutrality of northern peatlands Qiu, Chunjing Ciais, Philippe Zhu, Dan Guenet, Bertrand Chang, Jinfeng Chaudhary, Nitin Kleinen, Thomas Li, Xinyu Müller, Jurek Xi, yi Zhang, Wenxin Ballantyne, Ashley P. Brewer, Simon C. Brovkin, Victor Charman, Dan J. Gustafson, Adrian Gallego-Sala, Angela V. Gasser, Thomas Holden, Joseph Joos, Fortunat Kwon, Min-Jung Lauerwald, Ronny Miller, Paul A. Peng, Shushi Page, Susan Smith, Benjamin Stocker, Benjamin David Sannel, Anna Britta Kristina Salmon, Elodie Schurgers, Guy Shurpali, Narasinha J. Wårlind, David Westermann, Sebastian Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Mathématiques et Informatique Appliquées (MIA Paris-Saclay) AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences Peking University Beijing Laboratoire de géologie de l'ENS (LGENS) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) European Research Council, ERC: SyG-2013-610028 IMBALANCE-P; Agence Nationale de la Recherche, ANR This work was supported by the European Research Council Synergy grant (SyG-2013-610028 IMBALANCE-P) and the French State Aid managed by the ANR under the ?Investissements d'avenir? programme (ANR-16-CONV-0003_Cland). ORCHIDEE-PEAT performed simulations using HPC resources from GENCI-TGCC (2020-A0070106328). A.V.G.-S. was funded by the Natural Environment Research Council (NERC standard grant no. NE/I012915/1 and no. NE/S001166/1). W.Z. acknowledges funding from the Swedish Research Council FORMAS 2016-01201 and Swedish National Space Agency 209/19. N.C. acknowledges funding by the Nunataryuk (EU grant agreement no. 773421) and the Swedish Research Council FORMAS (contract no. 2019-01151). LPJ-GUESS_dyn simulations were performed on the supercomputing facilities at the University of Oslo, Norway, and on the Aurora and Tetralith resources of the Swedish National Infrastructure for Computing (SNIC) at the Lund University Centre for Scientific and Technical Computing (Lunarc), project no. 2021/2-61 and no. 2021/2-28, and Link?ping University, project no. snic2020/5-563. A.G. P.A.M. W.Z. B.S. D.W. and N.C. acknowledge support from the strategic research areas Modeling the Regional and Global Earth System (MERGE) and Biodiversity and Ecosystem Services in a Changing Climate (BECC) at Lund University. P.A.M. and D.W. received financial support from the H2020 CRESCENDO project (grant agreement no. 641816). LPJ-GUESS simulations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at LUNARC partially funded by the Swedish Research Council through grant agreement no. 2018-05973. J.M. and F.J. acknowledge financial support by the Swiss National Science Foundation (no. 200020_172476 and no. 200020_200511) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 820989 (project COMFORT) and no. 821003 (project 4C). The work reflects only the authors views; the European Commission and their executive agency are not responsible for any use that may be made of the information the work contains. B.G. received funding from the European Union's Horizon 2020 research and innovation program under grant agreement no. 641816 (CRESCENDO) and no. 821003 (4C project). B.D.S was funded by the Swiss National Science Foundation grant no. PCEFP2_181115. T.K. acknowledges support from the German Federal Ministry for Education and Research (BMBF) through the PalMod programme (grant no. 01LP1507B and no. 01LP1921A). LPJ-MPI experiments were performed at the German Climate Computing Centre (DKRZ), using resources from the Max Planck Institute for Meteorology. N.J.S. acknowledges financial support from Academy of Finland (no. 296887 and no. 334422) and the Finnish Ministry of Agriculture and Forestry (no. VN/28562/2020). J.C. acknowledged support from the Fundamental Research Funds for the Central Universities (no. 2021QNA6005). D.Z. acknowledges funding from the National Natural Science Foundation of China (grant no. 42101090 and no. 41988101). W.Z and G.S. acknowledge support from the Danish National Research Foundation (DNRF100). C.Q. P.C. D.Z. and B.G. designed the research; C.Q. and P.C. drafted the manuscript; J.C. prepared the climate forcing for ORCHIDEE-PEAT and computed estimates of global and Northern Hemisphere CO2 emissions from ISIMIP2b terrestrial biosphere models; C.Q. N.C. T.K. X.Y.L. J.M. Y.X. and W.Z. performed model simulations; A.V.G.-S. and S.C.B. provided estimates for future peat carbon sink from Gallego-Sala 15; all authors contributed to the interpretation of the results and draft revision. ANR-16-CONV-0003,CLAND,CLAND : Changement climatique et usage des terres(2016) European Project: 641816,H2020,H2020-SC5-2014-two-stage,CRESCENDO(2015) 2022 https://hal.archives-ouvertes.fr/hal-03554166 https://hal.archives-ouvertes.fr/hal-03554166/document https://hal.archives-ouvertes.fr/hal-03554166/file/PIIS2590332221007260.pdf https://doi.org/10.1016/j.oneear.2021.12.008 en eng HAL CCSD Cell press info:eu-repo/semantics/altIdentifier/doi/10.1016/j.oneear.2021.12.008 info:eu-repo/grantAgreement//641816/EU/Coordinated Research in Earth Systems and Climate: Experiments, kNowledge, Dissemination and Outreach/CRESCENDO hal-03554166 https://hal.archives-ouvertes.fr/hal-03554166 https://hal.archives-ouvertes.fr/hal-03554166/document https://hal.archives-ouvertes.fr/hal-03554166/file/PIIS2590332221007260.pdf doi:10.1016/j.oneear.2021.12.008 http://creativecommons.org/licenses/by-nc-nd/ info:eu-repo/semantics/OpenAccess CC-BY-NC-ND ISSN: 2590-3322 One Earth https://hal.archives-ouvertes.fr/hal-03554166 One Earth, Cell press, 2022, 5 (1), pp.86-97. ⟨10.1016/j.oneear.2021.12.008⟩ carbon dioxide carbon-cycle feedback land surface models long-term climate change methane peatland permafrost [SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology [SDE.MCG]Environmental Sciences/Global Changes info:eu-repo/semantics/article Journal articles 2022 ftunivnantes https://doi.org/10.1016/j.oneear.2021.12.008 2022-06-12T05:52:17Z International audience Northern peatlands store 300–600 Pg C, of which approximately half are underlain by permafrost. Climate warming and, in some regions, soil drying from enhanced evaporation are progressively threatening this large carbon stock. Here, we assess future CO2 and CH4 fluxes from northern peatlands using five land surface models that explicitly include representation of peatland processes. Under Representative Concentration Pathways (RCP) 2.6, northern peatlands are projected to remain a net sink of CO2 and climate neutral for the next three centuries. A shift to a net CO2 source and a substantial increase in CH4 emissions are projected under RCP8.5, which could exacerbate global warming by 0.21°C (range, 0.09–0.49°C) by the year 2300. The true warming impact of peatlands might be higher owing to processes not simulated by the models and direct anthropogenic disturbance. Our study highlights the importance of understanding how future warming might trigger high carbon losses from northern peatlands. Article in Journal/Newspaper permafrost Université de Nantes: HAL-UNIV-NANTES One Earth 5 1 86 97