Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)

Changes in the carbonate chemistry of coral reef waters are driven by carbon fluxes from two sources: concentrations of CO2 in the atmospheric and source water, and the primary production/respiration and calcification/dissolution of the benthic community. Recent model analyses have shown that, depen...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Kleypas, Joan A., Anthony, Kenneth R. N., Gattuso, Jean-Pierre
Other Authors: Laboratoire d'océanographie de Villefranche (LOV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03502009
https://doi.org/10.1111/j.1365-2486.2011.02530.x
id ftunivnantes:oai:HAL:hal-03502009v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-03502009v1 2023-05-15T17:49:57+02:00 Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia) Kleypas, Joan A. Anthony, Kenneth R. N. Gattuso, Jean-Pierre Laboratoire d'océanographie de Villefranche (LOV) Observatoire océanologique de Villefranche-sur-mer (OOVM) Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) 2011 https://hal.archives-ouvertes.fr/hal-03502009 https://doi.org/10.1111/j.1365-2486.2011.02530.x en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2486.2011.02530.x hal-03502009 https://hal.archives-ouvertes.fr/hal-03502009 doi:10.1111/j.1365-2486.2011.02530.x ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://hal.archives-ouvertes.fr/hal-03502009 Global Change Biology, Wiley, 2011, 17 (12), pp.3667-3678. ⟨10.1111/j.1365-2486.2011.02530.x⟩ [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2011 ftunivnantes https://doi.org/10.1111/j.1365-2486.2011.02530.x 2022-09-20T22:54:26Z Changes in the carbonate chemistry of coral reef waters are driven by carbon fluxes from two sources: concentrations of CO2 in the atmospheric and source water, and the primary production/respiration and calcification/dissolution of the benthic community. Recent model analyses have shown that, depending on the composition of the reef community, the air-sea flux of CO2 driven by benthic community processes can exceed that due to increases in atmospheric CO2 (ocean acidification). We field test this model and examine the role of three key members of benthic reef communities in modifying the chemistry of the ocean source water: corals, macroalgae, and sand. Building on data from previous carbon flux studies along a reef-flat transect in Moorea (French Polynesia), we illustrate that the drawdown of total dissolved inorganic carbon (C-T) due to photosynthesis and calcification of reef communities can exceed the draw down of total alkalinity (A(T)) due to calcification of corals and calcifying algae, leading to a net increase in aragonite saturation state (Omega(a)). We use the model to test how changes in atmospheric CO2 forcing and benthic community structure affect the overall calcification rates on the reef flat. Results show that between the preindustrial period and 1992, ocean acidification caused reef flat calcification rates to decline by an estimated 15%, but loss of coral cover caused calcification rates to decline by at least three times that amount. The results also show that the upstream-downstream patterns of carbonate chemistry were affected by the spatial patterns of benthic community structure. Changes in the ratio of photosynthesis to calcification can thus partially compensate for ocean acidification, at least on shallow reef flats. With no change in benthic community structure, however, ocean acidification depressed net calcification of the reef flat consistent with findings of previous studies. Article in Journal/Newspaper Ocean acidification Université de Nantes: HAL-UNIV-NANTES Global Change Biology 17 12 3667 3678
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Kleypas, Joan A.
Anthony, Kenneth R. N.
Gattuso, Jean-Pierre
Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)
topic_facet [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description Changes in the carbonate chemistry of coral reef waters are driven by carbon fluxes from two sources: concentrations of CO2 in the atmospheric and source water, and the primary production/respiration and calcification/dissolution of the benthic community. Recent model analyses have shown that, depending on the composition of the reef community, the air-sea flux of CO2 driven by benthic community processes can exceed that due to increases in atmospheric CO2 (ocean acidification). We field test this model and examine the role of three key members of benthic reef communities in modifying the chemistry of the ocean source water: corals, macroalgae, and sand. Building on data from previous carbon flux studies along a reef-flat transect in Moorea (French Polynesia), we illustrate that the drawdown of total dissolved inorganic carbon (C-T) due to photosynthesis and calcification of reef communities can exceed the draw down of total alkalinity (A(T)) due to calcification of corals and calcifying algae, leading to a net increase in aragonite saturation state (Omega(a)). We use the model to test how changes in atmospheric CO2 forcing and benthic community structure affect the overall calcification rates on the reef flat. Results show that between the preindustrial period and 1992, ocean acidification caused reef flat calcification rates to decline by an estimated 15%, but loss of coral cover caused calcification rates to decline by at least three times that amount. The results also show that the upstream-downstream patterns of carbonate chemistry were affected by the spatial patterns of benthic community structure. Changes in the ratio of photosynthesis to calcification can thus partially compensate for ocean acidification, at least on shallow reef flats. With no change in benthic community structure, however, ocean acidification depressed net calcification of the reef flat consistent with findings of previous studies.
author2 Laboratoire d'océanographie de Villefranche (LOV)
Observatoire océanologique de Villefranche-sur-mer (OOVM)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Kleypas, Joan A.
Anthony, Kenneth R. N.
Gattuso, Jean-Pierre
author_facet Kleypas, Joan A.
Anthony, Kenneth R. N.
Gattuso, Jean-Pierre
author_sort Kleypas, Joan A.
title Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)
title_short Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)
title_full Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)
title_fullStr Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)
title_full_unstemmed Coral reefs modify their seawater carbon chemistry - case study from a barrier reef (Moorea, French Polynesia)
title_sort coral reefs modify their seawater carbon chemistry - case study from a barrier reef (moorea, french polynesia)
publisher HAL CCSD
publishDate 2011
url https://hal.archives-ouvertes.fr/hal-03502009
https://doi.org/10.1111/j.1365-2486.2011.02530.x
genre Ocean acidification
genre_facet Ocean acidification
op_source ISSN: 1354-1013
EISSN: 1365-2486
Global Change Biology
https://hal.archives-ouvertes.fr/hal-03502009
Global Change Biology, Wiley, 2011, 17 (12), pp.3667-3678. ⟨10.1111/j.1365-2486.2011.02530.x⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2486.2011.02530.x
hal-03502009
https://hal.archives-ouvertes.fr/hal-03502009
doi:10.1111/j.1365-2486.2011.02530.x
op_doi https://doi.org/10.1111/j.1365-2486.2011.02530.x
container_title Global Change Biology
container_volume 17
container_issue 12
container_start_page 3667
op_container_end_page 3678
_version_ 1766156484809326592