Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring
International audience The ongoing recovery of terrestrial large carnivores in North America and Europe is accompanied by intense controversy. On the one hand, reestablishment of large carnivores entails a recovery of their most important ecological role, predation. On the other hand, societies are...
Published in: | Proceedings of the National Academy of Sciences |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Other Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-03367133 https://hal.science/hal-03367133/document https://hal.science/hal-03367133/file/Bischof2020PNAS.pdf https://doi.org/10.1073/pnas.2011383117 |
id |
ftunivnantes:oai:HAL:hal-03367133v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivnantes:oai:HAL:hal-03367133v1 2023-05-15T15:50:43+02:00 Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring Bischof, Richard Milleret, Cyril Dupont, Pierre Chipperfield, Joseph Tourani, Mahdieh Ordiz, Andrés de Valpine, Perry Turek, Daniel Royle, J. Andrew Gimenez, Olivier Flagstad, Øystein Åkesson, Mikael Svensson, Linn Brøseth, Henrik Kindberg, Jonas Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) Université Paul-Valéry - Montpellier 3 (UPVM)-École pratique des hautes études (EPHE) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) 2020-12-01 https://hal.science/hal-03367133 https://hal.science/hal-03367133/document https://hal.science/hal-03367133/file/Bischof2020PNAS.pdf https://doi.org/10.1073/pnas.2011383117 en eng HAL CCSD National Academy of Sciences info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2011383117 hal-03367133 https://hal.science/hal-03367133 https://hal.science/hal-03367133/document https://hal.science/hal-03367133/file/Bischof2020PNAS.pdf doi:10.1073/pnas.2011383117 info:eu-repo/semantics/OpenAccess ISSN: 0027-8424 EISSN: 1091-6490 Proceedings of the National Academy of Sciences of the United States of America https://hal.science/hal-03367133 Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (48), pp.30531-30538. ⟨10.1073/pnas.2011383117⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1073/pnas.2011383117 2023-03-08T02:41:00Z International audience The ongoing recovery of terrestrial large carnivores in North America and Europe is accompanied by intense controversy. On the one hand, reestablishment of large carnivores entails a recovery of their most important ecological role, predation. On the other hand, societies are struggling to relearn how to live with apex predators that kill livestock, compete for game species, and occasionally injure or kill people. Those responsible for managing these species and mitigating conflict often lack fundamental information due to a long-standing challenge in ecology: How do we draw robust population-level inferences for elusive animals spread over immense areas? Here we showcase the application of an effective tool for spatially explicit tracking and forecasting of wildlife population dynamics at scales that are relevant to management and conservation. We analyzed the world’s largest dataset on carnivores comprising more than 35,000 noninvasively obtained DNA samples from over 6,000 individual brown bears ( Ursus arctos ), gray wolves ( Canis lupus ), and wolverines ( Gulo gulo ). Our analyses took into account that not all individuals are detected and, even if detected, their fates are not always known. We show unequivocal quantitative evidence of large carnivore recovery in northern Europe, juxtaposed with the finding that humans are the single-most important factor driving the dynamics of these apex predators. We present maps and forecasts of the spatiotemporal dynamics of large carnivore populations, transcending national boundaries and management regimes. Article in Journal/Newspaper Canis lupus Gulo gulo Ursus arctos Université de Nantes: HAL-UNIV-NANTES Proceedings of the National Academy of Sciences 117 48 30531 30538 |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
[SDE]Environmental Sciences |
spellingShingle |
[SDE]Environmental Sciences Bischof, Richard Milleret, Cyril Dupont, Pierre Chipperfield, Joseph Tourani, Mahdieh Ordiz, Andrés de Valpine, Perry Turek, Daniel Royle, J. Andrew Gimenez, Olivier Flagstad, Øystein Åkesson, Mikael Svensson, Linn Brøseth, Henrik Kindberg, Jonas Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
topic_facet |
[SDE]Environmental Sciences |
description |
International audience The ongoing recovery of terrestrial large carnivores in North America and Europe is accompanied by intense controversy. On the one hand, reestablishment of large carnivores entails a recovery of their most important ecological role, predation. On the other hand, societies are struggling to relearn how to live with apex predators that kill livestock, compete for game species, and occasionally injure or kill people. Those responsible for managing these species and mitigating conflict often lack fundamental information due to a long-standing challenge in ecology: How do we draw robust population-level inferences for elusive animals spread over immense areas? Here we showcase the application of an effective tool for spatially explicit tracking and forecasting of wildlife population dynamics at scales that are relevant to management and conservation. We analyzed the world’s largest dataset on carnivores comprising more than 35,000 noninvasively obtained DNA samples from over 6,000 individual brown bears ( Ursus arctos ), gray wolves ( Canis lupus ), and wolverines ( Gulo gulo ). Our analyses took into account that not all individuals are detected and, even if detected, their fates are not always known. We show unequivocal quantitative evidence of large carnivore recovery in northern Europe, juxtaposed with the finding that humans are the single-most important factor driving the dynamics of these apex predators. We present maps and forecasts of the spatiotemporal dynamics of large carnivore populations, transcending national boundaries and management regimes. |
author2 |
Centre d’Ecologie Fonctionnelle et Evolutive (CEFE) Université Paul-Valéry - Montpellier 3 (UPVM)-École pratique des hautes études (EPHE) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD France-Sud )-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) |
format |
Article in Journal/Newspaper |
author |
Bischof, Richard Milleret, Cyril Dupont, Pierre Chipperfield, Joseph Tourani, Mahdieh Ordiz, Andrés de Valpine, Perry Turek, Daniel Royle, J. Andrew Gimenez, Olivier Flagstad, Øystein Åkesson, Mikael Svensson, Linn Brøseth, Henrik Kindberg, Jonas |
author_facet |
Bischof, Richard Milleret, Cyril Dupont, Pierre Chipperfield, Joseph Tourani, Mahdieh Ordiz, Andrés de Valpine, Perry Turek, Daniel Royle, J. Andrew Gimenez, Olivier Flagstad, Øystein Åkesson, Mikael Svensson, Linn Brøseth, Henrik Kindberg, Jonas |
author_sort |
Bischof, Richard |
title |
Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
title_short |
Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
title_full |
Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
title_fullStr |
Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
title_full_unstemmed |
Estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
title_sort |
estimating and forecasting spatial population dynamics of apex predators using transnational genetic monitoring |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.science/hal-03367133 https://hal.science/hal-03367133/document https://hal.science/hal-03367133/file/Bischof2020PNAS.pdf https://doi.org/10.1073/pnas.2011383117 |
genre |
Canis lupus Gulo gulo Ursus arctos |
genre_facet |
Canis lupus Gulo gulo Ursus arctos |
op_source |
ISSN: 0027-8424 EISSN: 1091-6490 Proceedings of the National Academy of Sciences of the United States of America https://hal.science/hal-03367133 Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (48), pp.30531-30538. ⟨10.1073/pnas.2011383117⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.2011383117 hal-03367133 https://hal.science/hal-03367133 https://hal.science/hal-03367133/document https://hal.science/hal-03367133/file/Bischof2020PNAS.pdf doi:10.1073/pnas.2011383117 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1073/pnas.2011383117 |
container_title |
Proceedings of the National Academy of Sciences |
container_volume |
117 |
container_issue |
48 |
container_start_page |
30531 |
op_container_end_page |
30538 |
_version_ |
1766385716216987648 |