Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco

International audience Accurate seasonal forecasting of cereal yields is an important decision support tool for countries, such as Morocco, that are not self-sufficient in order to predict, as early as possible, importation needs. This study aims to develop an early forecasting model of cereal yield...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Bouras, El Houssaine, Jarlan, Lionel, Er-Raki, Salah, Balaghi, Riad, Amazirh, Abdelhakim, Richard, Bastien, Khabba, Saïd
Other Authors: Université Cadi Ayyad Marrakech (UCA), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut national de la recherche agronomique Maroc (INRA Maroc), Université Mohammed VI Polytechnique Ben Guerir (UM6P), Gestion de l'Eau, Acteurs, Usages (UMR G-EAU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), ARTS program from IRD, France, H2020 PRIMA ALTOS project, MISTRALS/SICMED2, PHC Toubkal - 39064WG/2018, PRIMA-IDEWA project, CHAAMS project - ERANETMED03-62, ACCWA project - 823965, SAGESSE - PPR/2015/48
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2021
Subjects:
Online Access:https://hal.inrae.fr/hal-03326563
https://hal.inrae.fr/hal-03326563/document
https://hal.inrae.fr/hal-03326563/file/Bouras_2021_RS.pdf
https://doi.org/10.3390/rs13163101
id ftunivnantes:oai:HAL:hal-03326563v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Climate indices
Crop yield forecasting
Remote sensing drought indices
Semiarid region
[SDE]Environmental Sciences
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
[INFO]Computer Science [cs]
spellingShingle Climate indices
Crop yield forecasting
Remote sensing drought indices
Semiarid region
[SDE]Environmental Sciences
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
[INFO]Computer Science [cs]
Bouras, El Houssaine
Jarlan, Lionel
Er-Raki, Salah
Balaghi, Riad
Amazirh, Abdelhakim
Richard, Bastien
Khabba, Saïd
Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
topic_facet Climate indices
Crop yield forecasting
Remote sensing drought indices
Semiarid region
[SDE]Environmental Sciences
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences
[INFO]Computer Science [cs]
description International audience Accurate seasonal forecasting of cereal yields is an important decision support tool for countries, such as Morocco, that are not self-sufficient in order to predict, as early as possible, importation needs. This study aims to develop an early forecasting model of cereal yields (soft wheat, barley and durum wheat) at the scale of the agricultural province considering the 15 most productive over 2000–2017 (i.e., 15 × 18 = 270 yields values). To this objective, we built on previous works that showed a tight linkage between cereal yields and various datasets including weather data (rainfall and air temperature), regional climate indices (North Atlantic Oscillation in particular), and drought indices derived from satellite observations in different wavelengths. The combination of the latter three data sets is assessed to predict cereal yields using linear (Multiple Linear Regression, MLR) and non-linear (Support Vector Machine, SVM; Random Forest, RF, and eXtreme Gradient Boost, XGBoost) machine learning algorithms. The calibration of the algorithmic parameters of the different approaches are carried out using a 5-fold cross validation technique and a leave-one-out method is implemented for model validation. The statistical metrics of the models are first analyzed as a function of the input datasets that are used, and as a function of the lead times, from 4 months to 2 months before harvest. The results show that combining data from multiple sources outperformed models based on one dataset only. In addition, the satellite drought indices are a major source of information for cereal prediction when the forecasting is carried out close to harvest (2 months before), while weather data and, to a lesser extent, climate indices, are key variables for earlier predictions. The best models can accurately predict yield in January (4 months before harvest) with an R2 = 0.88 and RMSE around 0.22 t. ha−1. The XGBoost method exhibited the best metrics. Finally, training a specific model separately for ...
author2 Université Cadi Ayyad Marrakech (UCA)
Centre d'études spatiales de la biosphère (CESBIO)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Institut national de la recherche agronomique Maroc (INRA Maroc)
Université Mohammed VI Polytechnique Ben Guerir (UM6P)
Gestion de l'Eau, Acteurs, Usages (UMR G-EAU)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
ARTS program from IRD, France
H2020 PRIMA ALTOS project
MISTRALS/SICMED2
PHC Toubkal - 39064WG/2018
PRIMA-IDEWA project
CHAAMS project - ERANETMED03-62
ACCWA project - 823965
SAGESSE - PPR/2015/48
format Article in Journal/Newspaper
author Bouras, El Houssaine
Jarlan, Lionel
Er-Raki, Salah
Balaghi, Riad
Amazirh, Abdelhakim
Richard, Bastien
Khabba, Saïd
author_facet Bouras, El Houssaine
Jarlan, Lionel
Er-Raki, Salah
Balaghi, Riad
Amazirh, Abdelhakim
Richard, Bastien
Khabba, Saïd
author_sort Bouras, El Houssaine
title Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
title_short Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
title_full Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
title_fullStr Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
title_full_unstemmed Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco
title_sort cereal yield forecasting with satellite drought-based indices, weather data and regional climate indices using machine learning in morocco
publisher HAL CCSD
publishDate 2021
url https://hal.inrae.fr/hal-03326563
https://hal.inrae.fr/hal-03326563/document
https://hal.inrae.fr/hal-03326563/file/Bouras_2021_RS.pdf
https://doi.org/10.3390/rs13163101
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source ISSN: 2072-4292
Remote Sensing
https://hal.inrae.fr/hal-03326563
Remote Sensing, 2021, 13 (16), pp.3101. ⟨10.3390/rs13163101⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.3390/rs13163101
hal-03326563
https://hal.inrae.fr/hal-03326563
https://hal.inrae.fr/hal-03326563/document
https://hal.inrae.fr/hal-03326563/file/Bouras_2021_RS.pdf
doi:10.3390/rs13163101
IRD: fdi:010082762
WOS: 000690023600001
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.3390/rs13163101
container_title Remote Sensing
container_volume 13
container_issue 16
container_start_page 3101
_version_ 1766136327145783296
spelling ftunivnantes:oai:HAL:hal-03326563v1 2023-05-15T17:36:44+02:00 Cereal Yield Forecasting with Satellite Drought-Based Indices, Weather Data and Regional Climate Indices Using Machine Learning in Morocco Bouras, El Houssaine Jarlan, Lionel Er-Raki, Salah Balaghi, Riad Amazirh, Abdelhakim Richard, Bastien Khabba, Saïd Université Cadi Ayyad Marrakech (UCA) Centre d'études spatiales de la biosphère (CESBIO) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Institut national de la recherche agronomique Maroc (INRA Maroc) Université Mohammed VI Polytechnique Ben Guerir (UM6P) Gestion de l'Eau, Acteurs, Usages (UMR G-EAU) Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) ARTS program from IRD, France H2020 PRIMA ALTOS project MISTRALS/SICMED2 PHC Toubkal - 39064WG/2018 PRIMA-IDEWA project CHAAMS project - ERANETMED03-62 ACCWA project - 823965 SAGESSE - PPR/2015/48 2021-08-02 https://hal.inrae.fr/hal-03326563 https://hal.inrae.fr/hal-03326563/document https://hal.inrae.fr/hal-03326563/file/Bouras_2021_RS.pdf https://doi.org/10.3390/rs13163101 en eng HAL CCSD MDPI info:eu-repo/semantics/altIdentifier/doi/10.3390/rs13163101 hal-03326563 https://hal.inrae.fr/hal-03326563 https://hal.inrae.fr/hal-03326563/document https://hal.inrae.fr/hal-03326563/file/Bouras_2021_RS.pdf doi:10.3390/rs13163101 IRD: fdi:010082762 WOS: 000690023600001 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess ISSN: 2072-4292 Remote Sensing https://hal.inrae.fr/hal-03326563 Remote Sensing, 2021, 13 (16), pp.3101. ⟨10.3390/rs13163101⟩ Climate indices Crop yield forecasting Remote sensing drought indices Semiarid region [SDE]Environmental Sciences [SDU.STU]Sciences of the Universe [physics]/Earth Sciences [INFO]Computer Science [cs] info:eu-repo/semantics/article Journal articles 2021 ftunivnantes https://doi.org/10.3390/rs13163101 2023-03-01T02:19:55Z International audience Accurate seasonal forecasting of cereal yields is an important decision support tool for countries, such as Morocco, that are not self-sufficient in order to predict, as early as possible, importation needs. This study aims to develop an early forecasting model of cereal yields (soft wheat, barley and durum wheat) at the scale of the agricultural province considering the 15 most productive over 2000–2017 (i.e., 15 × 18 = 270 yields values). To this objective, we built on previous works that showed a tight linkage between cereal yields and various datasets including weather data (rainfall and air temperature), regional climate indices (North Atlantic Oscillation in particular), and drought indices derived from satellite observations in different wavelengths. The combination of the latter three data sets is assessed to predict cereal yields using linear (Multiple Linear Regression, MLR) and non-linear (Support Vector Machine, SVM; Random Forest, RF, and eXtreme Gradient Boost, XGBoost) machine learning algorithms. The calibration of the algorithmic parameters of the different approaches are carried out using a 5-fold cross validation technique and a leave-one-out method is implemented for model validation. The statistical metrics of the models are first analyzed as a function of the input datasets that are used, and as a function of the lead times, from 4 months to 2 months before harvest. The results show that combining data from multiple sources outperformed models based on one dataset only. In addition, the satellite drought indices are a major source of information for cereal prediction when the forecasting is carried out close to harvest (2 months before), while weather data and, to a lesser extent, climate indices, are key variables for earlier predictions. The best models can accurately predict yield in January (4 months before harvest) with an R2 = 0.88 and RMSE around 0.22 t. ha−1. The XGBoost method exhibited the best metrics. Finally, training a specific model separately for ... Article in Journal/Newspaper North Atlantic North Atlantic oscillation Université de Nantes: HAL-UNIV-NANTES Remote Sensing 13 16 3101