Cd/Ca ratios of in situ collected planktonic foraminiferal tests

International audience The Cd/Ca ratios of planktonic foraminiferal tests have been used to reconstruct surface water nutrient utilization and paleoproductivity. The reliability of this proxy has hitherto not been comprehensively studied, however. To fill this gap, we present novel Cd/Ca data for in...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: Ripperger, S., Schiebel, Ralf, Rehkämper, M., Halliday, A.
Other Authors: Laboratoire de Planétologie et Géodynamique de Nantes UMR 6112 (LPGN), Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), Imperial College London, Laboratoire Magmas et Volcans (LMV), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Clermont Auvergne 2017-2020 (UCA 2017-2020 )-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://univ-angers.hal.science/hal-03278084
https://univ-angers.hal.science/hal-03278084/document
https://univ-angers.hal.science/hal-03278084/file/2007PA001524.pdf
https://doi.org/10.1029/2007PA001524
Description
Summary:International audience The Cd/Ca ratios of planktonic foraminiferal tests have been used to reconstruct surface water nutrient utilization and paleoproductivity. The reliability of this proxy has hitherto not been comprehensively studied, however. To fill this gap, we present novel Cd/Ca data for in situ sampled and sedimentary planktonic foraminifers of the species Globigerinoides ruber, G. sacculifer, Globigerina bulloides, Orbulina universa, and Globorotalia truncatulinoides from the Arabian Sea and the North Atlantic. The Cd/Ca ratios obtained for G. ruber sampled from the live habitat generally display a correlation with seawater phosphate content, but no such trend is observed for G. sacculifer. This distinct behavior may reflect different ecological niches or speciesspecific incorporation of Cd into the calcite shells of the organisms. The Cd/Ca ratios of G. ruber, G. sacculifer, and G. bulloides from surface sediments are consistently higher than those obtained for live collected specimens of the same species. Postdepositional alteration of the tests is unlikely to be responsible for these systematic differences. Rather, they appear to reflect a combination of factors, including the formation of calcite crusts with high Cd contents, the different timescales that are represented by in situ and sedimentary foraminiferal tests, and the dominance of tests from periods of high productivity in sediments. Our results also reveal higher Cd/Ca ratios for live G. ruber than for settling tests of the same species. This suggests that planktonic foraminiferal shells are partially dissolved while they individually settle through the water column. Sedimentary tests, however, will be less affected by dissolution processes because these shells are primarily deposited in mass sinking events, which feature much higher settling velocities than those experienced by single settling shells