Technical Note: Determining the size-normalised weight of planktic foraminifera

International audience The size-normalised weight (SNW) of planktic foraminifera, a measure of test wall thickness and density, is potentially a valuable palaeo-proxy for marine carbon chemistry. As increasing attention is given to developing this proxy it is important that methods are comparable be...

Full description

Bibliographic Details
Main Authors: Beer, Christopher J., Schiebel, Ralf, Wilson, Paul-A.
Other Authors: National Oceanography Centre Southampton (NOC), University of Southampton, Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Laboratoire de Planétologie et Géodynamique UMR 6112 (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://univ-angers.hal.science/hal-03277988
https://univ-angers.hal.science/hal-03277988/document
https://univ-angers.hal.science/hal-03277988/file/bgd-7-905-2010.pdf
https://doi.org/10.5194/bgd-7-905-2010
Description
Summary:International audience The size-normalised weight (SNW) of planktic foraminifera, a measure of test wall thickness and density, is potentially a valuable palaeo-proxy for marine carbon chemistry. As increasing attention is given to developing this proxy it is important that methods are comparable between studies. Here, we compare SNW data generated using two different methods to account for variability in test size, namely i) the narrow (50 μm range) sieve fraction method and ii) the individually measured test size method. Using specimens from the 200–250 μm sieve fraction range collected in multinet samples from the North Atlantic, we find that sieving does not constrain size sufficiently well to isolate changes in weight driven by variations in test wall thickness and density from those driven by size. We estimate that these SNW data are associated with an uncertainty, or error bar, of about ±11%. Errors associated with the narrow sieve fraction method may be reduced by decreasing the size of the sieve window, by using larger tests and by increasing the number tests employed. In situations where numerous large tests are unavailable, however, substantial errors associated with this sieve method remain unavoidable. In such circumstances the individually measured test size method provides a better means for estimating SNW because, as our results show, this method isolates changes in weight driven by variations in test wall thickness and density from those driven by size.