Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables
International audience Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric...
Published in: | Atmospheric Measurement Techniques |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf https://doi.org/10.5194/amt-14-4543-2021 |
id |
ftunivnantes:oai:HAL:hal-03266763v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences |
spellingShingle |
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences Planat, Noémie Gehring, Josué Vignon, Étienne Berne, Alexis Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables |
topic_facet |
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences |
description |
International audience Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric signal is challenging. The present study develops a new method, called process identification based on vertical gradient signs (PIVSs), to spatially identify the occurrence of the main microphysical processes (aggregation and riming, crystal growth by vapor deposition and sublimation) in snowfall from dual-polarization Doppler radar scans. We first derive an analytical framework to assess in which meteorological conditions the local vertical gradients of radar variables reliably inform about microphysical processes. In such conditions, we then identify regions dominated by (i) vapor deposition, (ii) aggregation and riming and (iii) snowflake sublimation and possibly snowflake breakup, based on the sign of the local vertical gradients of the reflectivity ZH and the differential reflectivity ZDR. The method is then applied to data from two frontal snowfall events, namely one in coastal Adélie Land, Antarctica, and one in the Taebaek Mountains in South Korea. The validity of the method is assessed by comparing its outcome with snowflake observations, using a multi-angle snowflake camera, and with the output of a hydrometeor classification, based on polarimetric radar signal. The application of the method further makes it possible to better characterize and understand how snowfall forms, grows and decays in two different geographical and meteorological contexts. In particular, we are able to automatically derive and discuss the altitude and thickness of the layers where each process prevails for both case studies. We infer some microphysical characteristics in terms of radar variables from statistical analysis of the method output (e.g., ZH and ZDR distribution for each process). We, finally, highlight the potential ... |
author2 |
Environmental Remote Sensing Laboratory Lausanne Ecole Polytechnique Fédérale de Lausanne (EPFL) McGill University = Université McGill Montréal, Canada Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) |
format |
Article in Journal/Newspaper |
author |
Planat, Noémie Gehring, Josué Vignon, Étienne Berne, Alexis |
author_facet |
Planat, Noémie Gehring, Josué Vignon, Étienne Berne, Alexis |
author_sort |
Planat, Noémie |
title |
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables |
title_short |
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables |
title_full |
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables |
title_fullStr |
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables |
title_full_unstemmed |
Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables |
title_sort |
identification of snowfall microphysical processes from eulerian vertical gradients of polarimetric radar variables |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf https://doi.org/10.5194/amt-14-4543-2021 |
genre |
Antarc* Antarctica |
genre_facet |
Antarc* Antarctica |
op_source |
ISSN: 1867-1381 EISSN: 1867-8548 Atmospheric Measurement Techniques https://hal.sorbonne-universite.fr/hal-03266763 Atmospheric Measurement Techniques, European Geosciences Union, 2021, 14 (6), pp.4543 - 4564. ⟨10.5194/amt-14-4543-2021⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5194/amt-14-4543-2021 hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf doi:10.5194/amt-14-4543-2021 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5194/amt-14-4543-2021 |
container_title |
Atmospheric Measurement Techniques |
container_volume |
14 |
container_issue |
6 |
container_start_page |
4543 |
op_container_end_page |
4564 |
_version_ |
1766264137998925824 |
spelling |
ftunivnantes:oai:HAL:hal-03266763v1 2023-05-15T13:56:36+02:00 Identification of snowfall microphysical processes from Eulerian vertical gradients of polarimetric radar variables Planat, Noémie Gehring, Josué Vignon, Étienne Berne, Alexis Environmental Remote Sensing Laboratory Lausanne Ecole Polytechnique Fédérale de Lausanne (EPFL) McGill University = Université McGill Montréal, Canada Laboratoire de Météorologie Dynamique (UMR 8539) (LMD) Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) Institut Pierre-Simon-Laplace (IPSL (FR_636)) Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales Toulouse (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) 2021-06-18 https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf https://doi.org/10.5194/amt-14-4543-2021 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/amt-14-4543-2021 hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763 https://hal.sorbonne-universite.fr/hal-03266763/document https://hal.sorbonne-universite.fr/hal-03266763/file/amt-14-4543-2021.pdf doi:10.5194/amt-14-4543-2021 info:eu-repo/semantics/OpenAccess ISSN: 1867-1381 EISSN: 1867-8548 Atmospheric Measurement Techniques https://hal.sorbonne-universite.fr/hal-03266763 Atmospheric Measurement Techniques, European Geosciences Union, 2021, 14 (6), pp.4543 - 4564. ⟨10.5194/amt-14-4543-2021⟩ [SDU.STU]Sciences of the Universe [physics]/Earth Sciences info:eu-repo/semantics/article Journal articles 2021 ftunivnantes https://doi.org/10.5194/amt-14-4543-2021 2022-10-18T23:30:36Z International audience Polarimetric radar systems are commonly used to study the microphysics of precipitation. While they offer continuous measurements with a large spatial coverage, retrieving information about the microphysical processes that govern the evolution of snowfall from the polarimetric signal is challenging. The present study develops a new method, called process identification based on vertical gradient signs (PIVSs), to spatially identify the occurrence of the main microphysical processes (aggregation and riming, crystal growth by vapor deposition and sublimation) in snowfall from dual-polarization Doppler radar scans. We first derive an analytical framework to assess in which meteorological conditions the local vertical gradients of radar variables reliably inform about microphysical processes. In such conditions, we then identify regions dominated by (i) vapor deposition, (ii) aggregation and riming and (iii) snowflake sublimation and possibly snowflake breakup, based on the sign of the local vertical gradients of the reflectivity ZH and the differential reflectivity ZDR. The method is then applied to data from two frontal snowfall events, namely one in coastal Adélie Land, Antarctica, and one in the Taebaek Mountains in South Korea. The validity of the method is assessed by comparing its outcome with snowflake observations, using a multi-angle snowflake camera, and with the output of a hydrometeor classification, based on polarimetric radar signal. The application of the method further makes it possible to better characterize and understand how snowfall forms, grows and decays in two different geographical and meteorological contexts. In particular, we are able to automatically derive and discuss the altitude and thickness of the layers where each process prevails for both case studies. We infer some microphysical characteristics in terms of radar variables from statistical analysis of the method output (e.g., ZH and ZDR distribution for each process). We, finally, highlight the potential ... Article in Journal/Newspaper Antarc* Antarctica Université de Nantes: HAL-UNIV-NANTES Atmospheric Measurement Techniques 14 6 4543 4564 |