Global reductions in seafloor biomass in response to climate change

International audience Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food,...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Jones, Daniel, Yool, Andrew, Wei, Chih‐lin, Henson, Stephanie, Ruhl, Henry, Watson, Reg, Gehlen, Marion
Other Authors: National Oceanography Centre Southampton (NOC), University of Southampton, Memorial University of Newfoundland = Université Memorial de Terre-Neuve St. John's, Canada (MUN), University of Tasmania Hobart, Australia (UTAS), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2014
Subjects:
Online Access:https://hal.science/hal-03112992
https://hal.science/hal-03112992/document
https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf
https://doi.org/10.1111/gcb.12480
id ftunivnantes:oai:HAL:hal-03112992v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Jones, Daniel
Yool, Andrew
Wei, Chih‐lin
Henson, Stephanie
Ruhl, Henry
Watson, Reg
Gehlen, Marion
Global reductions in seafloor biomass in response to climate change
topic_facet [SDV.EE.BIO]Life Sciences [q-bio]/Ecology
environment/Bioclimatology
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.
author2 National Oceanography Centre Southampton (NOC)
University of Southampton
Memorial University of Newfoundland = Université Memorial de Terre-Neuve St. John's, Canada (MUN)
University of Tasmania Hobart, Australia (UTAS)
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Jones, Daniel
Yool, Andrew
Wei, Chih‐lin
Henson, Stephanie
Ruhl, Henry
Watson, Reg
Gehlen, Marion
author_facet Jones, Daniel
Yool, Andrew
Wei, Chih‐lin
Henson, Stephanie
Ruhl, Henry
Watson, Reg
Gehlen, Marion
author_sort Jones, Daniel
title Global reductions in seafloor biomass in response to climate change
title_short Global reductions in seafloor biomass in response to climate change
title_full Global reductions in seafloor biomass in response to climate change
title_fullStr Global reductions in seafloor biomass in response to climate change
title_full_unstemmed Global reductions in seafloor biomass in response to climate change
title_sort global reductions in seafloor biomass in response to climate change
publisher HAL CCSD
publishDate 2014
url https://hal.science/hal-03112992
https://hal.science/hal-03112992/document
https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf
https://doi.org/10.1111/gcb.12480
genre Northeast Atlantic
genre_facet Northeast Atlantic
op_source ISSN: 1354-1013
EISSN: 1365-2486
Global Change Biology
https://hal.science/hal-03112992
Global Change Biology, 2014, 20 (6), pp.1861-1872. ⟨10.1111/gcb.12480⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.12480
hal-03112992
https://hal.science/hal-03112992
https://hal.science/hal-03112992/document
https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf
doi:10.1111/gcb.12480
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/gcb.12480
container_title Global Change Biology
container_volume 20
container_issue 6
container_start_page 1861
op_container_end_page 1872
_version_ 1766143314712592384
spelling ftunivnantes:oai:HAL:hal-03112992v1 2023-05-15T17:41:38+02:00 Global reductions in seafloor biomass in response to climate change Jones, Daniel Yool, Andrew Wei, Chih‐lin Henson, Stephanie Ruhl, Henry Watson, Reg Gehlen, Marion National Oceanography Centre Southampton (NOC) University of Southampton Memorial University of Newfoundland = Université Memorial de Terre-Neuve St. John's, Canada (MUN) University of Tasmania Hobart, Australia (UTAS) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Modelling the Earth Response to Multiple Anthropogenic Interactions and Dynamics (MERMAID) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) 2014 https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf https://doi.org/10.1111/gcb.12480 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.12480 hal-03112992 https://hal.science/hal-03112992 https://hal.science/hal-03112992/document https://hal.science/hal-03112992/file/gcb.12480%281%29.pdf doi:10.1111/gcb.12480 info:eu-repo/semantics/OpenAccess ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://hal.science/hal-03112992 Global Change Biology, 2014, 20 (6), pp.1861-1872. ⟨10.1111/gcb.12480⟩ [SDV.EE.BIO]Life Sciences [q-bio]/Ecology environment/Bioclimatology [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 2014 ftunivnantes https://doi.org/10.1111/gcb.12480 2023-02-08T04:26:35Z International audience Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. Article in Journal/Newspaper Northeast Atlantic Université de Nantes: HAL-UNIV-NANTES Global Change Biology 20 6 1861 1872