Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks

International audience Porous MOFs capable of storing relatively high amount of dry methane (CH 4) in adsorbed phase are largely explored, however solid CH 4 storage in confined pores of MOFs in the form of hydrates is yet to be discovered. Here we report a rational approach to form CH 4 hydrates by...

Full description

Bibliographic Details
Published in:Journal of the American Chemical Society
Main Authors: Cuadrado-Collados, Carlos, Mouchaham, Georges, Daemen, Luke, Cheng, Yongqiang, Ramirez-Cuesta, Anibal, Aggarwal, Himanshu, Missyul, Alexander, Eddaoudi, Mohamed, Belmabkhout, Youssef, Silvestre-Albero, Joaquin
Other Authors: Universidad de Alicante, King Abdullah University of Science and Technology (KAUST), Oak Ridge National Laboratory Oak Ridge (ORNL), UT-Battelle, LLC, Spallation Neutron Source, UT-Battelle, LLC-UT-Battelle, LLC, Thermodynamics, FPMS
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-03090519
https://hal.archives-ouvertes.fr/hal-03090519/document
https://hal.archives-ouvertes.fr/hal-03090519/file/2020_JACS_Preprint.pdf
https://doi.org/10.1021/jacs.0c01459
id ftunivnantes:oai:HAL:hal-03090519v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-03090519v1 2023-05-15T17:11:51+02:00 Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks Cuadrado-Collados, Carlos Mouchaham, Georges Daemen, Luke Cheng, Yongqiang Ramirez-Cuesta, Anibal Aggarwal, Himanshu Missyul, Alexander Eddaoudi, Mohamed Belmabkhout, Youssef Silvestre-Albero, Joaquin Universidad de Alicante King Abdullah University of Science and Technology (KAUST) Oak Ridge National Laboratory Oak Ridge (ORNL) UT-Battelle, LLC Spallation Neutron Source UT-Battelle, LLC-UT-Battelle, LLC Thermodynamics FPMS 2020-08-05 https://hal.archives-ouvertes.fr/hal-03090519 https://hal.archives-ouvertes.fr/hal-03090519/document https://hal.archives-ouvertes.fr/hal-03090519/file/2020_JACS_Preprint.pdf https://doi.org/10.1021/jacs.0c01459 en eng HAL CCSD American Chemical Society info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.0c01459 hal-03090519 https://hal.archives-ouvertes.fr/hal-03090519 https://hal.archives-ouvertes.fr/hal-03090519/document https://hal.archives-ouvertes.fr/hal-03090519/file/2020_JACS_Preprint.pdf doi:10.1021/jacs.0c01459 info:eu-repo/semantics/OpenAccess ISSN: 0002-7863 EISSN: 1520-5126 Journal of the American Chemical Society https://hal.archives-ouvertes.fr/hal-03090519 Journal of the American Chemical Society, American Chemical Society, 2020, 142 (31), pp.13391-13397. ⟨10.1021/jacs.0c01459⟩ [CHIM]Chemical Sciences info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1021/jacs.0c01459 2022-09-13T23:09:34Z International audience Porous MOFs capable of storing relatively high amount of dry methane (CH 4) in adsorbed phase are largely explored, however solid CH 4 storage in confined pores of MOFs in the form of hydrates is yet to be discovered. Here we report a rational approach to form CH 4 hydrates by taking advantage of the optimal pore confinement in relatively narrow cavities of hydrolytically stable MOFs. Unprecedentedly, we were able to isolate methane hydrate (MH) nanocrystals with a sI structure encapsulated inside MOF pores with an optimal cavity dimension. It was found, that confined nanocrystals require cavities slightly larger than the unit cell crystal size of MHs (1.2 nm), as exemplified in the experimental case study performed on Cr-soc-MOF-1 vs smaller cavities of Y-shp-MOF-5. Under these conditions, the excess amount of methane stored in the pores of Cr-soc-MOF-1 in the form of MH was found to be ≈50% larger than the corresponding dry adsorbed amount at 10 MPa. More importantly, the pressure gradient driving the CH 4 storage/delivery process could be drastically reduced compared to the conventional CH 4 adsorbed phase storage on the dry Cr-soc-MOF-1 (≤3 MPa vs. 10 MPa) Article in Journal/Newspaper Methane hydrate Université de Nantes: HAL-UNIV-NANTES Journal of the American Chemical Society 142 31 13391 13397
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [CHIM]Chemical Sciences
spellingShingle [CHIM]Chemical Sciences
Cuadrado-Collados, Carlos
Mouchaham, Georges
Daemen, Luke
Cheng, Yongqiang
Ramirez-Cuesta, Anibal
Aggarwal, Himanshu
Missyul, Alexander
Eddaoudi, Mohamed
Belmabkhout, Youssef
Silvestre-Albero, Joaquin
Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks
topic_facet [CHIM]Chemical Sciences
description International audience Porous MOFs capable of storing relatively high amount of dry methane (CH 4) in adsorbed phase are largely explored, however solid CH 4 storage in confined pores of MOFs in the form of hydrates is yet to be discovered. Here we report a rational approach to form CH 4 hydrates by taking advantage of the optimal pore confinement in relatively narrow cavities of hydrolytically stable MOFs. Unprecedentedly, we were able to isolate methane hydrate (MH) nanocrystals with a sI structure encapsulated inside MOF pores with an optimal cavity dimension. It was found, that confined nanocrystals require cavities slightly larger than the unit cell crystal size of MHs (1.2 nm), as exemplified in the experimental case study performed on Cr-soc-MOF-1 vs smaller cavities of Y-shp-MOF-5. Under these conditions, the excess amount of methane stored in the pores of Cr-soc-MOF-1 in the form of MH was found to be ≈50% larger than the corresponding dry adsorbed amount at 10 MPa. More importantly, the pressure gradient driving the CH 4 storage/delivery process could be drastically reduced compared to the conventional CH 4 adsorbed phase storage on the dry Cr-soc-MOF-1 (≤3 MPa vs. 10 MPa)
author2 Universidad de Alicante
King Abdullah University of Science and Technology (KAUST)
Oak Ridge National Laboratory Oak Ridge (ORNL)
UT-Battelle, LLC
Spallation Neutron Source
UT-Battelle, LLC-UT-Battelle, LLC
Thermodynamics
FPMS
format Article in Journal/Newspaper
author Cuadrado-Collados, Carlos
Mouchaham, Georges
Daemen, Luke
Cheng, Yongqiang
Ramirez-Cuesta, Anibal
Aggarwal, Himanshu
Missyul, Alexander
Eddaoudi, Mohamed
Belmabkhout, Youssef
Silvestre-Albero, Joaquin
author_facet Cuadrado-Collados, Carlos
Mouchaham, Georges
Daemen, Luke
Cheng, Yongqiang
Ramirez-Cuesta, Anibal
Aggarwal, Himanshu
Missyul, Alexander
Eddaoudi, Mohamed
Belmabkhout, Youssef
Silvestre-Albero, Joaquin
author_sort Cuadrado-Collados, Carlos
title Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks
title_short Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks
title_full Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks
title_fullStr Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks
title_full_unstemmed Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks
title_sort quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal–organic frameworks
publisher HAL CCSD
publishDate 2020
url https://hal.archives-ouvertes.fr/hal-03090519
https://hal.archives-ouvertes.fr/hal-03090519/document
https://hal.archives-ouvertes.fr/hal-03090519/file/2020_JACS_Preprint.pdf
https://doi.org/10.1021/jacs.0c01459
genre Methane hydrate
genre_facet Methane hydrate
op_source ISSN: 0002-7863
EISSN: 1520-5126
Journal of the American Chemical Society
https://hal.archives-ouvertes.fr/hal-03090519
Journal of the American Chemical Society, American Chemical Society, 2020, 142 (31), pp.13391-13397. ⟨10.1021/jacs.0c01459⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.0c01459
hal-03090519
https://hal.archives-ouvertes.fr/hal-03090519
https://hal.archives-ouvertes.fr/hal-03090519/document
https://hal.archives-ouvertes.fr/hal-03090519/file/2020_JACS_Preprint.pdf
doi:10.1021/jacs.0c01459
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1021/jacs.0c01459
container_title Journal of the American Chemical Society
container_volume 142
container_issue 31
container_start_page 13391
op_container_end_page 13397
_version_ 1766068601122455552