Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica

International audience The offshore extent of Antarctic katabatic winds exerts a strong control on the production of sea ice and the formation of polynyas. In this study, we make use of a combination of ground-based remotely sensed and meteorological measurements at Dumont d'Urville (DDU) stati...

Full description

Bibliographic Details
Published in:Journal of the Atmospheric Sciences
Main Authors: Vignon, Étienne, Picard, Ghislain, Durán-Alarcón, Claudio, Alexander, Simon, Gallée, Hubert, Berne, Alexis
Other Authors: Centre National de la Recherche Scientifique (CNRS), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-03065736
https://hal.science/hal-03065736/document
https://hal.science/hal-03065736/file/jasd190264.pdf
https://doi.org/10.1175/JAS-D-19-0264.1
id ftunivnantes:oai:HAL:hal-03065736v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-03065736v1 2023-05-15T13:44:13+02:00 Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica Vignon, Étienne Picard, Ghislain Durán-Alarcón, Claudio Alexander, Simon Gallée, Hubert Berne, Alexis Centre National de la Recherche Scientifique (CNRS) Institut des Géosciences de l’Environnement (IGE) Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ) Université Grenoble Alpes (UGA) 2020-04-01 https://hal.science/hal-03065736 https://hal.science/hal-03065736/document https://hal.science/hal-03065736/file/jasd190264.pdf https://doi.org/10.1175/JAS-D-19-0264.1 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/JAS-D-19-0264.1 hal-03065736 https://hal.science/hal-03065736 https://hal.science/hal-03065736/document https://hal.science/hal-03065736/file/jasd190264.pdf doi:10.1175/JAS-D-19-0264.1 info:eu-repo/semantics/OpenAccess ISSN: 0022-4928 EISSN: 1520-0469 Journal of the Atmospheric Sciences https://hal.science/hal-03065736 Journal of the Atmospheric Sciences, 2020, 77 (4), pp.1295-1312. ⟨10.1175/JAS-D-19-0264.1⟩ [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1175/JAS-D-19-0264.1 2023-03-01T02:47:14Z International audience The offshore extent of Antarctic katabatic winds exerts a strong control on the production of sea ice and the formation of polynyas. In this study, we make use of a combination of ground-based remotely sensed and meteorological measurements at Dumont d'Urville (DDU) station, satellite images, and simulations with the Weather Research and Forecasting Model to analyze a major katabatic wind event in Adélie Land. Once well developed over the slope of the ice sheet, the katabatic flow experiences an abrupt transition near the coastal edge consisting of a sharp increase in the boundary layer depth, a sudden decrease in wind speed, and a decrease in Froude number from 3.5 to 0.3. This so-called katabatic jump manifests as a turbulent ''wall'' of blowing snow in which updrafts exceed 5 m s 21. The wall reaches heights of 1000 m and its horizontal extent along the coast is more than 400 km. By destabilizing the boundary layer downstream, the jump favors the trapping of a gravity wave train-with a horizontal wavelength of 10.5 km-that develops in a few hours. The trapped gravity waves exert a drag that considerably slows down the low-level outflow. Moreover, atmospheric rotors form below the first wave crests. The wind speed record measured at DDU in 2017 (58.5 m s 21) is due to the vertical advection of momentum by a rotor. A statistical analysis of observations at DDU reveals that katabatic jumps and low-level trapped gravity waves occur frequently over coastal Adélie Land. It emphasizes the important role of such phenomena in the coastal Antarctic dynamics. Article in Journal/Newspaper Antarc* Antarctic Antarctica Ice Sheet Sea ice Université de Nantes: HAL-UNIV-NANTES Antarctic Dumont d'Urville ENVELOPE(140.017,140.017,-66.667,-66.667) Dumont-d'Urville ENVELOPE(140.013,140.013,-66.667,-66.667) Journal of the Atmospheric Sciences 77 4 1295 1312
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDE]Environmental Sciences
spellingShingle [SDE]Environmental Sciences
Vignon, Étienne
Picard, Ghislain
Durán-Alarcón, Claudio
Alexander, Simon
Gallée, Hubert
Berne, Alexis
Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica
topic_facet [SDE]Environmental Sciences
description International audience The offshore extent of Antarctic katabatic winds exerts a strong control on the production of sea ice and the formation of polynyas. In this study, we make use of a combination of ground-based remotely sensed and meteorological measurements at Dumont d'Urville (DDU) station, satellite images, and simulations with the Weather Research and Forecasting Model to analyze a major katabatic wind event in Adélie Land. Once well developed over the slope of the ice sheet, the katabatic flow experiences an abrupt transition near the coastal edge consisting of a sharp increase in the boundary layer depth, a sudden decrease in wind speed, and a decrease in Froude number from 3.5 to 0.3. This so-called katabatic jump manifests as a turbulent ''wall'' of blowing snow in which updrafts exceed 5 m s 21. The wall reaches heights of 1000 m and its horizontal extent along the coast is more than 400 km. By destabilizing the boundary layer downstream, the jump favors the trapping of a gravity wave train-with a horizontal wavelength of 10.5 km-that develops in a few hours. The trapped gravity waves exert a drag that considerably slows down the low-level outflow. Moreover, atmospheric rotors form below the first wave crests. The wind speed record measured at DDU in 2017 (58.5 m s 21) is due to the vertical advection of momentum by a rotor. A statistical analysis of observations at DDU reveals that katabatic jumps and low-level trapped gravity waves occur frequently over coastal Adélie Land. It emphasizes the important role of such phenomena in the coastal Antarctic dynamics.
author2 Centre National de la Recherche Scientifique (CNRS)
Institut des Géosciences de l’Environnement (IGE)
Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)
format Article in Journal/Newspaper
author Vignon, Étienne
Picard, Ghislain
Durán-Alarcón, Claudio
Alexander, Simon
Gallée, Hubert
Berne, Alexis
author_facet Vignon, Étienne
Picard, Ghislain
Durán-Alarcón, Claudio
Alexander, Simon
Gallée, Hubert
Berne, Alexis
author_sort Vignon, Étienne
title Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica
title_short Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica
title_full Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica
title_fullStr Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica
title_full_unstemmed Gravity Wave Excitation during the Coastal Transition of an Extreme Katabatic Flow in Antarctica
title_sort gravity wave excitation during the coastal transition of an extreme katabatic flow in antarctica
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-03065736
https://hal.science/hal-03065736/document
https://hal.science/hal-03065736/file/jasd190264.pdf
https://doi.org/10.1175/JAS-D-19-0264.1
long_lat ENVELOPE(140.017,140.017,-66.667,-66.667)
ENVELOPE(140.013,140.013,-66.667,-66.667)
geographic Antarctic
Dumont d'Urville
Dumont-d'Urville
geographic_facet Antarctic
Dumont d'Urville
Dumont-d'Urville
genre Antarc*
Antarctic
Antarctica
Ice Sheet
Sea ice
genre_facet Antarc*
Antarctic
Antarctica
Ice Sheet
Sea ice
op_source ISSN: 0022-4928
EISSN: 1520-0469
Journal of the Atmospheric Sciences
https://hal.science/hal-03065736
Journal of the Atmospheric Sciences, 2020, 77 (4), pp.1295-1312. ⟨10.1175/JAS-D-19-0264.1⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/JAS-D-19-0264.1
hal-03065736
https://hal.science/hal-03065736
https://hal.science/hal-03065736/document
https://hal.science/hal-03065736/file/jasd190264.pdf
doi:10.1175/JAS-D-19-0264.1
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1175/JAS-D-19-0264.1
container_title Journal of the Atmospheric Sciences
container_volume 77
container_issue 4
container_start_page 1295
op_container_end_page 1312
_version_ 1766198860741345280