Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
International audience The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice p...
Published in: | Elementa: Science of the Anthropocene |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Other Authors: | , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2020
|
Subjects: | |
Online Access: | https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf https://doi.org/10.1525/elementa.430 |
id |
ftunivnantes:oai:HAL:hal-02992304v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
Under-ice phytoplankton blooms Biogeochemical cycles Nutrients Sea Ice Climate change Arctic Ocean [SDE]Environmental Sciences |
spellingShingle |
Under-ice phytoplankton blooms Biogeochemical cycles Nutrients Sea Ice Climate change Arctic Ocean [SDE]Environmental Sciences Ardyna, Mathieu Mundy, C. Mills, Matthew Oziel, Laurent Grondin, Pierre-Luc Lacour, Léo Verin, Gauthier van Dijken, Gert Ras, Joséphine Alou-Font, Eva Babin, Marcel Gosselin, Michel Tremblay, Jean-Éric Raimbault, Patrick Assmy, Philipp Nicolaus, Marcel Claustre, Hervé Arrigo, Kevin Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean |
topic_facet |
Under-ice phytoplankton blooms Biogeochemical cycles Nutrients Sea Ice Climate change Arctic Ocean [SDE]Environmental Sciences |
description |
International audience The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios <1). The implications of such differences in UIB composition could have important ramifications for Arctic biogeochemical cycles, and ultimately impact carbon flow ... |
author2 |
Institut méditerranéen d'océanologie (MIO) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) |
format |
Article in Journal/Newspaper |
author |
Ardyna, Mathieu Mundy, C. Mills, Matthew Oziel, Laurent Grondin, Pierre-Luc Lacour, Léo Verin, Gauthier van Dijken, Gert Ras, Joséphine Alou-Font, Eva Babin, Marcel Gosselin, Michel Tremblay, Jean-Éric Raimbault, Patrick Assmy, Philipp Nicolaus, Marcel Claustre, Hervé Arrigo, Kevin |
author_facet |
Ardyna, Mathieu Mundy, C. Mills, Matthew Oziel, Laurent Grondin, Pierre-Luc Lacour, Léo Verin, Gauthier van Dijken, Gert Ras, Joséphine Alou-Font, Eva Babin, Marcel Gosselin, Michel Tremblay, Jean-Éric Raimbault, Patrick Assmy, Philipp Nicolaus, Marcel Claustre, Hervé Arrigo, Kevin |
author_sort |
Ardyna, Mathieu |
title |
Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean |
title_short |
Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean |
title_full |
Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean |
title_fullStr |
Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean |
title_full_unstemmed |
Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean |
title_sort |
environmental drivers of under-ice phytoplankton bloom dynamics in the arctic ocean |
publisher |
HAL CCSD |
publishDate |
2020 |
url |
https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf https://doi.org/10.1525/elementa.430 |
geographic |
Arctic Arctic Ocean |
geographic_facet |
Arctic Arctic Ocean |
genre |
Arctic Arctic Ocean Climate change ice pack Phytoplankton Sea ice |
genre_facet |
Arctic Arctic Ocean Climate change ice pack Phytoplankton Sea ice |
op_source |
EISSN: 2325-1026 Elementa: Science of the Anthropocene https://hal.science/hal-02992304 Elementa: Science of the Anthropocene, 2020, 8 (1), pp.30. ⟨10.1525/elementa.430⟩ https://online.ucpress.edu/elementa/article/doi/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1525/elementa.430 hal-02992304 https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf doi:10.1525/elementa.430 |
op_rights |
http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1525/elementa.430 https://doi.org/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton |
container_title |
Elementa: Science of the Anthropocene |
container_volume |
8 |
_version_ |
1766315952761208832 |
spelling |
ftunivnantes:oai:HAL:hal-02992304v1 2023-05-15T14:44:28+02:00 Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean Ardyna, Mathieu Mundy, C. Mills, Matthew Oziel, Laurent Grondin, Pierre-Luc Lacour, Léo Verin, Gauthier van Dijken, Gert Ras, Joséphine Alou-Font, Eva Babin, Marcel Gosselin, Michel Tremblay, Jean-Éric Raimbault, Patrick Assmy, Philipp Nicolaus, Marcel Claustre, Hervé Arrigo, Kevin Institut méditerranéen d'océanologie (MIO) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) 2020-01-06 https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf https://doi.org/10.1525/elementa.430 en eng HAL CCSD University of California Press info:eu-repo/semantics/altIdentifier/doi/10.1525/elementa.430 hal-02992304 https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf doi:10.1525/elementa.430 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess EISSN: 2325-1026 Elementa: Science of the Anthropocene https://hal.science/hal-02992304 Elementa: Science of the Anthropocene, 2020, 8 (1), pp.30. ⟨10.1525/elementa.430⟩ https://online.ucpress.edu/elementa/article/doi/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton Under-ice phytoplankton blooms Biogeochemical cycles Nutrients Sea Ice Climate change Arctic Ocean [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1525/elementa.430 https://doi.org/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton 2023-02-01T00:38:31Z International audience The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios <1). The implications of such differences in UIB composition could have important ramifications for Arctic biogeochemical cycles, and ultimately impact carbon flow ... Article in Journal/Newspaper Arctic Arctic Ocean Climate change ice pack Phytoplankton Sea ice Université de Nantes: HAL-UNIV-NANTES Arctic Arctic Ocean Elementa: Science of the Anthropocene 8 |