Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean

International audience The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice p...

Full description

Bibliographic Details
Published in:Elementa: Science of the Anthropocene
Main Authors: Ardyna, Mathieu, Mundy, C., Mills, Matthew, Oziel, Laurent, Grondin, Pierre-Luc, Lacour, Léo, Verin, Gauthier, van Dijken, Gert, Ras, Joséphine, Alou-Font, Eva, Babin, Marcel, Gosselin, Michel, Tremblay, Jean-Éric, Raimbault, Patrick, Assmy, Philipp, Nicolaus, Marcel, Claustre, Hervé, Arrigo, Kevin
Other Authors: Institut méditerranéen d'océanologie (MIO), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02992304
https://hal.science/hal-02992304/document
https://hal.science/hal-02992304/file/430-7318-1-pb.pdf
https://doi.org/10.1525/elementa.430
id ftunivnantes:oai:HAL:hal-02992304v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Under-ice phytoplankton blooms
Biogeochemical cycles
Nutrients
Sea Ice
Climate change
Arctic Ocean
[SDE]Environmental Sciences
spellingShingle Under-ice phytoplankton blooms
Biogeochemical cycles
Nutrients
Sea Ice
Climate change
Arctic Ocean
[SDE]Environmental Sciences
Ardyna, Mathieu
Mundy, C.
Mills, Matthew
Oziel, Laurent
Grondin, Pierre-Luc
Lacour, Léo
Verin, Gauthier
van Dijken, Gert
Ras, Joséphine
Alou-Font, Eva
Babin, Marcel
Gosselin, Michel
Tremblay, Jean-Éric
Raimbault, Patrick
Assmy, Philipp
Nicolaus, Marcel
Claustre, Hervé
Arrigo, Kevin
Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
topic_facet Under-ice phytoplankton blooms
Biogeochemical cycles
Nutrients
Sea Ice
Climate change
Arctic Ocean
[SDE]Environmental Sciences
description International audience The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios <1). The implications of such differences in UIB composition could have important ramifications for Arctic biogeochemical cycles, and ultimately impact carbon flow ...
author2 Institut méditerranéen d'océanologie (MIO)
Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Ardyna, Mathieu
Mundy, C.
Mills, Matthew
Oziel, Laurent
Grondin, Pierre-Luc
Lacour, Léo
Verin, Gauthier
van Dijken, Gert
Ras, Joséphine
Alou-Font, Eva
Babin, Marcel
Gosselin, Michel
Tremblay, Jean-Éric
Raimbault, Patrick
Assmy, Philipp
Nicolaus, Marcel
Claustre, Hervé
Arrigo, Kevin
author_facet Ardyna, Mathieu
Mundy, C.
Mills, Matthew
Oziel, Laurent
Grondin, Pierre-Luc
Lacour, Léo
Verin, Gauthier
van Dijken, Gert
Ras, Joséphine
Alou-Font, Eva
Babin, Marcel
Gosselin, Michel
Tremblay, Jean-Éric
Raimbault, Patrick
Assmy, Philipp
Nicolaus, Marcel
Claustre, Hervé
Arrigo, Kevin
author_sort Ardyna, Mathieu
title Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
title_short Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
title_full Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
title_fullStr Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
title_full_unstemmed Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean
title_sort environmental drivers of under-ice phytoplankton bloom dynamics in the arctic ocean
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-02992304
https://hal.science/hal-02992304/document
https://hal.science/hal-02992304/file/430-7318-1-pb.pdf
https://doi.org/10.1525/elementa.430
geographic Arctic
Arctic Ocean
geographic_facet Arctic
Arctic Ocean
genre Arctic
Arctic Ocean
Climate change
ice pack
Phytoplankton
Sea ice
genre_facet Arctic
Arctic Ocean
Climate change
ice pack
Phytoplankton
Sea ice
op_source EISSN: 2325-1026
Elementa: Science of the Anthropocene
https://hal.science/hal-02992304
Elementa: Science of the Anthropocene, 2020, 8 (1), pp.30. &#x27E8;10.1525/elementa.430&#x27E9;
https://online.ucpress.edu/elementa/article/doi/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1525/elementa.430
hal-02992304
https://hal.science/hal-02992304
https://hal.science/hal-02992304/document
https://hal.science/hal-02992304/file/430-7318-1-pb.pdf
doi:10.1525/elementa.430
op_rights http://creativecommons.org/licenses/by/
info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1525/elementa.430
https://doi.org/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton
container_title Elementa: Science of the Anthropocene
container_volume 8
_version_ 1766315952761208832
spelling ftunivnantes:oai:HAL:hal-02992304v1 2023-05-15T14:44:28+02:00 Environmental drivers of under-ice phytoplankton bloom dynamics in the Arctic Ocean Ardyna, Mathieu Mundy, C. Mills, Matthew Oziel, Laurent Grondin, Pierre-Luc Lacour, Léo Verin, Gauthier van Dijken, Gert Ras, Joséphine Alou-Font, Eva Babin, Marcel Gosselin, Michel Tremblay, Jean-Éric Raimbault, Patrick Assmy, Philipp Nicolaus, Marcel Claustre, Hervé Arrigo, Kevin Institut méditerranéen d'océanologie (MIO) Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS) 2020-01-06 https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf https://doi.org/10.1525/elementa.430 en eng HAL CCSD University of California Press info:eu-repo/semantics/altIdentifier/doi/10.1525/elementa.430 hal-02992304 https://hal.science/hal-02992304 https://hal.science/hal-02992304/document https://hal.science/hal-02992304/file/430-7318-1-pb.pdf doi:10.1525/elementa.430 http://creativecommons.org/licenses/by/ info:eu-repo/semantics/OpenAccess EISSN: 2325-1026 Elementa: Science of the Anthropocene https://hal.science/hal-02992304 Elementa: Science of the Anthropocene, 2020, 8 (1), pp.30. &#x27E8;10.1525/elementa.430&#x27E9; https://online.ucpress.edu/elementa/article/doi/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton Under-ice phytoplankton blooms Biogeochemical cycles Nutrients Sea Ice Climate change Arctic Ocean [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1525/elementa.430 https://doi.org/10.1525/elementa.430/114475/Environmental-drivers-of-under-ice-phytoplankton 2023-02-01T00:38:31Z International audience The decline of sea-ice thickness, area, and volume due to the transition from multi-year to first-year sea ice has improved the under-ice light environment for pelagic Arctic ecosystems. One unexpected and direct consequence of this transition, the proliferation of under-ice phytoplankton blooms (UIBs), challenges the paradigm that waters beneath the ice pack harbor little planktonic life. Little is known about the diversity and spatial distribution of UIBs in the Arctic Ocean, or the environmental drivers behind their timing, magnitude, and taxonomic composition. Here, we compiled a unique and comprehensive dataset from seven major research projects in the Arctic Ocean (11 expeditions, covering the spring sea-ice-covered period to summer ice-free conditions) to identify the environmental drivers responsible for initiating and shaping the magnitude and assemblage structure of UIBs. The temporal dynamics behind UIB formation are related to the ways that snow and sea-ice conditions impact the under-ice light field. In particular, the onset of snowmelt significantly increased under-ice light availability (>0.1–0.2 mol photons m–2 d–1), marking the concomitant termination of the sea-ice algal bloom and initiation of UIBs. At the pan-Arctic scale, bloom magnitude (expressed as maximum chlorophyll a concentration) was predicted best by winter water Si(OH)4 and PO43– concentrations, as well as Si(OH)4:NO3– and PO43–:NO3– drawdown ratios, but not NO3– concentration. Two main phytoplankton assemblages dominated UIBs (diatoms or Phaeocystis), driven primarily by the winter nitrate:silicate (NO3–:Si(OH)4) ratio and the under-ice light climate. Phaeocystis co-dominated in low Si(OH)4 (i.e., NO3:Si(OH)4 molar ratios >1) waters, while diatoms contributed the bulk of UIB biomass when Si(OH)4 was high (i.e., NO3:Si(OH)4 molar ratios <1). The implications of such differences in UIB composition could have important ramifications for Arctic biogeochemical cycles, and ultimately impact carbon flow ... Article in Journal/Newspaper Arctic Arctic Ocean Climate change ice pack Phytoplankton Sea ice Université de Nantes: HAL-UNIV-NANTES Arctic Arctic Ocean Elementa: Science of the Anthropocene 8