Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)

International audience Mapping of permafrost mountain landscape of Verkhoyansk in the Arctic zone is based on the recognition by remote sensing and GIS modeling of the landscape permafrost-objects resulting from the combination of the Milkov’s taxonomic classifications. The methodology developed int...

Full description

Bibliographic Details
Main Authors: Gadal, Sébastien, Zakharov, Moisei, Danilov, Yuri, Kamičaitytė, Jūratė
Other Authors: Aix Marseille Université (AMU), Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), North-Eastern Federal University, Kaunas University of Technology (KTU), Polar Urban Centers PUR, IEEE International Geoscience and Remote Sensing Symposium, CNRS PEPS RICOCHET
Format: Conference Object
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02951488
https://hal.science/hal-02951488/document
https://hal.science/hal-02951488/file/0003082.pdf
id ftunivnantes:oai:HAL:hal-02951488v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-02951488v1 2023-05-15T14:57:12+02:00 Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia) Gadal, Sébastien Zakharov, Moisei, Danilov, Yuri Kamičaitytė, Jūratė Aix Marseille Université (AMU) Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS) COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA) North-Eastern Federal University Kaunas University of Technology (KTU) Polar Urban Centers PUR IEEE International Geoscience and Remote Sensing Symposium CNRS PEPS RICOCHET Online, United States 2020-09-26 https://hal.science/hal-02951488 https://hal.science/hal-02951488/document https://hal.science/hal-02951488/file/0003082.pdf en eng HAL CCSD hal-02951488 https://hal.science/hal-02951488 https://hal.science/hal-02951488/document https://hal.science/hal-02951488/file/0003082.pdf info:eu-repo/semantics/OpenAccess 2020 IEEE International Geoscience and Remote Sensing Symposium IGARSS 2020 https://hal.science/hal-02951488 IGARSS 2020, IEEE International Geoscience and Remote Sensing Symposium, Sep 2020, Online, United States. pp.3082-3085 https://igarss2020.org/ Russia Verkhoyansk Sentinel 2 Multi-fusion methods Land surface temperature Landform classification Permafrost landscape mapping Permafrost mountains Arctic Support vector Machine ASTER Landsat 8 TIRS [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environmental and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/conferenceObject Conference papers 2020 ftunivnantes 2023-02-08T05:21:56Z International audience Mapping of permafrost mountain landscape of Verkhoyansk in the Arctic zone is based on the recognition by remote sensing and GIS modeling of the landscape permafrost-objects resulting from the combination of the Milkov’s taxonomic classifications. The methodology developed integrates three types of modeling: the first one is mapping the vegetation repartition using Sentinel 2A with SVM classifier during the summer vegetative period; second is the landform classification using Jenness’s algorithm from ASTER data; and the third one is land surface temperature calculus from Landsat 8 OLI/TIRS images identifying the permafrost characteristics categories. Results are merged using a native index equation of permafrost landscape objects in GIS. This original mapping approach improves significantly the understanding of complexity of the permafrost mountain structures and processes with the annual monitoring by remote sensing. Conference Object Arctic permafrost Université de Nantes: HAL-UNIV-NANTES Arctic Verkhoyansk ENVELOPE(133.400,133.400,67.544,67.544)
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Russia
Verkhoyansk
Sentinel 2
Multi-fusion methods
Land surface temperature
Landform classification
Permafrost landscape mapping
Permafrost mountains
Arctic
Support vector Machine
ASTER
Landsat 8 TIRS
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environmental and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
spellingShingle Russia
Verkhoyansk
Sentinel 2
Multi-fusion methods
Land surface temperature
Landform classification
Permafrost landscape mapping
Permafrost mountains
Arctic
Support vector Machine
ASTER
Landsat 8 TIRS
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environmental and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Gadal, Sébastien
Zakharov, Moisei,
Danilov, Yuri
Kamičaitytė, Jūratė
Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)
topic_facet Russia
Verkhoyansk
Sentinel 2
Multi-fusion methods
Land surface temperature
Landform classification
Permafrost landscape mapping
Permafrost mountains
Arctic
Support vector Machine
ASTER
Landsat 8 TIRS
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environmental and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
description International audience Mapping of permafrost mountain landscape of Verkhoyansk in the Arctic zone is based on the recognition by remote sensing and GIS modeling of the landscape permafrost-objects resulting from the combination of the Milkov’s taxonomic classifications. The methodology developed integrates three types of modeling: the first one is mapping the vegetation repartition using Sentinel 2A with SVM classifier during the summer vegetative period; second is the landform classification using Jenness’s algorithm from ASTER data; and the third one is land surface temperature calculus from Landsat 8 OLI/TIRS images identifying the permafrost characteristics categories. Results are merged using a native index equation of permafrost landscape objects in GIS. This original mapping approach improves significantly the understanding of complexity of the permafrost mountain structures and processes with the annual monitoring by remote sensing.
author2 Aix Marseille Université (AMU)
Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
North-Eastern Federal University
Kaunas University of Technology (KTU)
Polar Urban Centers PUR
IEEE International Geoscience and Remote Sensing Symposium
CNRS PEPS RICOCHET
format Conference Object
author Gadal, Sébastien
Zakharov, Moisei,
Danilov, Yuri
Kamičaitytė, Jūratė
author_facet Gadal, Sébastien
Zakharov, Moisei,
Danilov, Yuri
Kamičaitytė, Jūratė
author_sort Gadal, Sébastien
title Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)
title_short Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)
title_full Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)
title_fullStr Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)
title_full_unstemmed Remote Sensing of Mountain Permafrost Landscape by Multi-Fusion Data Modeling. Example of Verkhoyansk Ridge (Russia)
title_sort remote sensing of mountain permafrost landscape by multi-fusion data modeling. example of verkhoyansk ridge (russia)
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-02951488
https://hal.science/hal-02951488/document
https://hal.science/hal-02951488/file/0003082.pdf
op_coverage Online, United States
long_lat ENVELOPE(133.400,133.400,67.544,67.544)
geographic Arctic
Verkhoyansk
geographic_facet Arctic
Verkhoyansk
genre Arctic
permafrost
genre_facet Arctic
permafrost
op_source 2020 IEEE International Geoscience and Remote Sensing Symposium
IGARSS 2020
https://hal.science/hal-02951488
IGARSS 2020, IEEE International Geoscience and Remote Sensing Symposium, Sep 2020, Online, United States. pp.3082-3085
https://igarss2020.org/
op_relation hal-02951488
https://hal.science/hal-02951488
https://hal.science/hal-02951488/document
https://hal.science/hal-02951488/file/0003082.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766329294975401984