Regional imprints of millennial variability during the MIS 3 period around Antarctica

International audience The climate of the last glacial Marine Isotopic Stage 3 (MIS3) period is characterized by strong millennial-scale variability with a succession of Dansgaard–Oeschger events first identified in Greenland ice cores and associated with variations of the Atlantic Meridional Overtu...

Full description

Bibliographic Details
Published in:Quaternary Science Reviews
Main Authors: Buiron, D., Stenni, B., Chappellaz, J., Landais, A., Baumgartner, M., Bonazza, M., Capron, E., Frezzotti, M., Kageyama, M., Lemieux-Dudon, B., Masson-Delmotte, V., Parrenin, F., Schilt, A., Selmo, E., Severi, M., Swingedouw, D., Udisti, R.
Other Authors: Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Scienze Geologiche Trieste, Università degli studi di Trieste = University of Trieste, Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Glaces et Continents, Climats et Isotopes Stables (GLACCIOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Bern, Italian National agency for new technologies, Energy and sustainable economic development Frascati (ENEA), Modélisation du climat (CLIM), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria), Climate and Environmental Physics Bern (CEP), Physikalisches Institut Bern, Universität Bern Bern (UNIBE)-Universität Bern Bern (UNIBE), Università degli studi di Parma = University of Parma (UNIPR), Università degli Studi di Firenze = University of Florence (UniFI)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-02931516
https://doi.org/10.1016/j.quascirev.2012.05.023
Description
Summary:International audience The climate of the last glacial Marine Isotopic Stage 3 (MIS3) period is characterized by strong millennial-scale variability with a succession of Dansgaard–Oeschger events first identified in Greenland ice cores and associated with variations of the Atlantic Meridional Overturning Circulation (AMOC). These abrupt events have a smooth and lagged counterpart in water stable isotopes from Antarctic ice cores. In this study we aim at depicting and understanding the circum-Antarctic expression of this millennial-scale variability. To illustrate the mechanisms potentially at work in the response of the southern high latitudes to an abrupt decrease of the AMOC, we first present results from experiments performed with the IPSL-CM4 atmosphere-ocean coupled model under glacial boundary conditions. When the AMOC is perturbed by imposing an additional freshwater flux in the North Atlantic, our model produces the classical bipolar seesaw mechanism generally invoked to explain the warming of the Southern Ocean/Antarctic region. However, this mechanism can be locally offset by faster atmospheric teleconnections originating from the tropics, even though the precise location of this fast response is not coherent among different climate models. Our model results are confronted with a synthesis of Antarctic records of ice core stable isotope and sea-salt sodium, including new data obtained on the TALDICE ice core. The IPSL-CM4 produces a dipole-like pattern around Antarctica, with warming in the Atlantic/Indian sectors contrasting with an unexpected cooling in the East-Pacific sector. The latter signal is not detected in our data synthesis. Both ice core data and simulations are consistent in depicting a more rapid response of the Atlantic sector compared to the Indian sector. This feature can be explained by the gradual impact of ocean transport on which faster atmospheric teleconnections are superimposed. Detailed investigations of the sequence of events between different proxies are conducted in three ...