In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation

International audience Human, tele-operated rovers, and surface infrastructures are now being actively considered for lunar polar exploration. Current approaches to energy provision consider, among others, hybrid direct energy/chemical technologies, such as solar photovoltaic arrays, batteries, and...

Full description

Bibliographic Details
Published in:Planetary and Space Science
Main Authors: Fleith, Patrick, Cowley, Aidan, Canals Pou, Alberto, Valle Lozano, Aaron, Frank, Rebecca, López Córdoba, Pablo, González-Cinca, Ricard
Other Authors: European Astronaut Centre - ESA/EAC (GERMANY), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Universitat Politècnica de Catalunya Barcelona (UPC), Escola Tècnica Superior d'Enginyeria Industrial de Barcelona Barcelona (ETSEIB), Luleå University of Technology (LUT), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02887846
https://hal.science/hal-02887846/document
https://hal.science/hal-02887846/file/Fleith_26488.pdf
https://doi.org/10.1016/j.pss.2019.104789
id ftunivnantes:oai:HAL:hal-02887846v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-02887846v1 2023-05-15T18:02:17+02:00 In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation Fleith, Patrick Cowley, Aidan Canals Pou, Alberto Valle Lozano, Aaron Frank, Rebecca López Córdoba, Pablo González-Cinca, Ricard European Astronaut Centre - ESA/EAC (GERMANY) Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO) Universitat Politècnica de Catalunya Barcelona (UPC) Escola Tècnica Superior d'Enginyeria Industrial de Barcelona Barcelona (ETSEIB) Luleå University of Technology (LUT) Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées 2020-02 https://hal.science/hal-02887846 https://hal.science/hal-02887846/document https://hal.science/hal-02887846/file/Fleith_26488.pdf https://doi.org/10.1016/j.pss.2019.104789 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.pss.2019.104789 hal-02887846 https://hal.science/hal-02887846 https://hal.science/hal-02887846/document https://hal.science/hal-02887846/file/Fleith_26488.pdf doi:10.1016/j.pss.2019.104789 OATAO: 26488 info:eu-repo/semantics/OpenAccess ISSN: 0032-0633 Planetary and Space Science https://hal.science/hal-02887846 Planetary and Space Science, 2020, 181, pp.1-12. ⟨10.1016/j.pss.2019.104789⟩ Thermal energy storage Thermoelectric MATLAB Moon ISRU [SDU.OTHER]Sciences of the Universe [physics]/Other info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1016/j.pss.2019.104789 2023-02-22T04:58:03Z International audience Human, tele-operated rovers, and surface infrastructures are now being actively considered for lunar polar exploration. Current approaches to energy provision consider, among others, hybrid direct energy/chemical technologies, such as solar photovoltaic arrays, batteries, and regenerative fuel cells. Due to the long period of darkness on the Moon and the challenges this poses to the aforementioned conventional energy generation and storage technologies, there is a need to assess the potential of In-Situ Resources Utilization (ISRU) methods to enable or supplement long duration missions. We present a computational model (MATLAB) of a Thermal Energy Storage (TES) system coupled to drive a heat engine (Thermoelectric Generator) to produce electricity. The TES medium designed is based off processed lunar regolith, an abundant material present on the surface of the Moon. The architecture has been optimized to provide a minimum electrical power of 36 W per unit after 66 h of polar night, but the modular nature of the model allows other ranges of parameter to be simulated. A trade-off between this ISRU-based concept and conventional approaches for energy production and storage was performed and ranked TES and thermoelectricity generation as the least appropriate option. This result is valuable in a period of enthusiasm towards ISRU. It shows that processes exploiting extraterrestrial materials instead of Earth supplies are not systematically attractive. Despite the non-favorable performances for the proposed concept, some perspectives for the TES system are given as well as potential model improvements such as the need to assess the use of a Stirling heat engine. Article in Journal/Newspaper polar night Université de Nantes: HAL-UNIV-NANTES Stirling ENVELOPE(164.117,164.117,-71.550,-71.550) Planetary and Space Science 181 104789
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Thermal energy storage
Thermoelectric
MATLAB
Moon
ISRU
[SDU.OTHER]Sciences of the Universe [physics]/Other
spellingShingle Thermal energy storage
Thermoelectric
MATLAB
Moon
ISRU
[SDU.OTHER]Sciences of the Universe [physics]/Other
Fleith, Patrick
Cowley, Aidan
Canals Pou, Alberto
Valle Lozano, Aaron
Frank, Rebecca
López Córdoba, Pablo
González-Cinca, Ricard
In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation
topic_facet Thermal energy storage
Thermoelectric
MATLAB
Moon
ISRU
[SDU.OTHER]Sciences of the Universe [physics]/Other
description International audience Human, tele-operated rovers, and surface infrastructures are now being actively considered for lunar polar exploration. Current approaches to energy provision consider, among others, hybrid direct energy/chemical technologies, such as solar photovoltaic arrays, batteries, and regenerative fuel cells. Due to the long period of darkness on the Moon and the challenges this poses to the aforementioned conventional energy generation and storage technologies, there is a need to assess the potential of In-Situ Resources Utilization (ISRU) methods to enable or supplement long duration missions. We present a computational model (MATLAB) of a Thermal Energy Storage (TES) system coupled to drive a heat engine (Thermoelectric Generator) to produce electricity. The TES medium designed is based off processed lunar regolith, an abundant material present on the surface of the Moon. The architecture has been optimized to provide a minimum electrical power of 36 W per unit after 66 h of polar night, but the modular nature of the model allows other ranges of parameter to be simulated. A trade-off between this ISRU-based concept and conventional approaches for energy production and storage was performed and ranked TES and thermoelectricity generation as the least appropriate option. This result is valuable in a period of enthusiasm towards ISRU. It shows that processes exploiting extraterrestrial materials instead of Earth supplies are not systematically attractive. Despite the non-favorable performances for the proposed concept, some perspectives for the TES system are given as well as potential model improvements such as the need to assess the use of a Stirling heat engine.
author2 European Astronaut Centre - ESA/EAC (GERMANY)
Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
Universitat Politècnica de Catalunya Barcelona (UPC)
Escola Tècnica Superior d'Enginyeria Industrial de Barcelona Barcelona (ETSEIB)
Luleå University of Technology (LUT)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées
format Article in Journal/Newspaper
author Fleith, Patrick
Cowley, Aidan
Canals Pou, Alberto
Valle Lozano, Aaron
Frank, Rebecca
López Córdoba, Pablo
González-Cinca, Ricard
author_facet Fleith, Patrick
Cowley, Aidan
Canals Pou, Alberto
Valle Lozano, Aaron
Frank, Rebecca
López Córdoba, Pablo
González-Cinca, Ricard
author_sort Fleith, Patrick
title In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation
title_short In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation
title_full In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation
title_fullStr In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation
title_full_unstemmed In-situ approach for thermal energy storage and thermoelectricity generation on the Moon: Modelling and simulation
title_sort in-situ approach for thermal energy storage and thermoelectricity generation on the moon: modelling and simulation
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-02887846
https://hal.science/hal-02887846/document
https://hal.science/hal-02887846/file/Fleith_26488.pdf
https://doi.org/10.1016/j.pss.2019.104789
long_lat ENVELOPE(164.117,164.117,-71.550,-71.550)
geographic Stirling
geographic_facet Stirling
genre polar night
genre_facet polar night
op_source ISSN: 0032-0633
Planetary and Space Science
https://hal.science/hal-02887846
Planetary and Space Science, 2020, 181, pp.1-12. ⟨10.1016/j.pss.2019.104789⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.pss.2019.104789
hal-02887846
https://hal.science/hal-02887846
https://hal.science/hal-02887846/document
https://hal.science/hal-02887846/file/Fleith_26488.pdf
doi:10.1016/j.pss.2019.104789
OATAO: 26488
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.pss.2019.104789
container_title Planetary and Space Science
container_volume 181
container_start_page 104789
_version_ 1766172086033711104