Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean

A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We inv...

Full description

Bibliographic Details
Published in:Global Change Biology
Main Authors: Olmos, Maxime, Payne, Mark, Nevoux, Marie, Prévost, Etienne, Chaput, Gerald, Du Pontavice, Hubert, Guitton, Jérôme, Sheehan, Timothy, Mills, Katherine, Rivot, Etienne
Other Authors: Écologie et santé des écosystèmes (ESE), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, Danmarks Tekniske Universitet = Technical University of Denmark (DTU), Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP), Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Fisheries and Oceans Canada (DFO), Northeast Fisheries Science Center (NEFSC), NOAA National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA), Gulf of Maine Research Institute (GMRI), The research leading to these results has received funding from the Agence Française de la Biodiversité under grant agreement INRAe-AFB SalmoGlob 2016–2018. The study was part-funded by the European Regional Development Fund through the Interreg Channel VA Programme, Project SAMARCH Salmonid Management Round the Channel
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://institut-agro-rennes-angers.hal.science/hal-02613874
https://institut-agro-rennes-angers.hal.science/hal-02613874v2/document
https://institut-agro-rennes-angers.hal.science/hal-02613874v2/file/Olmos_et_al-2019-Global_Change_Biology%281%29.pdf
https://doi.org/10.1111/gcb.14913
id ftunivnantes:oai:HAL:hal-02613874v2
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic hierarchical Bayesian model
climate change
stage-based life cycle model
marine survival
bottom-up
environmentally driven changes
Spatial covariation
Atlantic salmon
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE]Life Sciences [q-bio]/Ecology
environment
spellingShingle hierarchical Bayesian model
climate change
stage-based life cycle model
marine survival
bottom-up
environmentally driven changes
Spatial covariation
Atlantic salmon
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE]Life Sciences [q-bio]/Ecology
environment
Olmos, Maxime
Payne, Mark,
Nevoux, Marie
Prévost, Etienne
Chaput, Gerald
Du Pontavice, Hubert
Guitton, Jérôme
Sheehan, Timothy
Mills, Katherine
Rivot, Etienne
Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean
topic_facet hierarchical Bayesian model
climate change
stage-based life cycle model
marine survival
bottom-up
environmentally driven changes
Spatial covariation
Atlantic salmon
[SDE.MCG]Environmental Sciences/Global Changes
[SDV.EE]Life Sciences [q-bio]/Ecology
environment
description A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock-groupings (CSG) in North America (NA) and Southern Europe (SE) over the period 1971-2014. We found strong coherence in the temporal variation in post-smolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor 1.8 over the 1971-2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the post-smolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for NA populations 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for SE populations 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats.
author2 Écologie et santé des écosystèmes (ESE)
Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST
Danmarks Tekniske Universitet = Technical University of Denmark (DTU)
Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP)
Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Fisheries and Oceans Canada (DFO)
Northeast Fisheries Science Center (NEFSC)
NOAA National Marine Fisheries Service (NMFS)
National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA)
Gulf of Maine Research Institute (GMRI)
The research leading to these results has received funding from the Agence Française de la Biodiversité under grant agreement INRAe-AFB SalmoGlob 2016–2018. The study was part-funded by the European Regional Development Fund through the Interreg Channel VA Programme, Project SAMARCH Salmonid Management Round the Channel
format Article in Journal/Newspaper
author Olmos, Maxime
Payne, Mark,
Nevoux, Marie
Prévost, Etienne
Chaput, Gerald
Du Pontavice, Hubert
Guitton, Jérôme
Sheehan, Timothy
Mills, Katherine
Rivot, Etienne
author_facet Olmos, Maxime
Payne, Mark,
Nevoux, Marie
Prévost, Etienne
Chaput, Gerald
Du Pontavice, Hubert
Guitton, Jérôme
Sheehan, Timothy
Mills, Katherine
Rivot, Etienne
author_sort Olmos, Maxime
title Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean
title_short Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean
title_full Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean
title_fullStr Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean
title_full_unstemmed Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean
title_sort spatial synchrony in the response of a long range migratory species ( salmo salar ) to climate change in the north atlantic ocean
publisher HAL CCSD
publishDate 2020
url https://institut-agro-rennes-angers.hal.science/hal-02613874
https://institut-agro-rennes-angers.hal.science/hal-02613874v2/document
https://institut-agro-rennes-angers.hal.science/hal-02613874v2/file/Olmos_et_al-2019-Global_Change_Biology%281%29.pdf
https://doi.org/10.1111/gcb.14913
geographic Norwegian Sea
geographic_facet Norwegian Sea
genre Atlantic salmon
Labrador Sea
North Atlantic
Norwegian Sea
Salmo salar
genre_facet Atlantic salmon
Labrador Sea
North Atlantic
Norwegian Sea
Salmo salar
op_source ISSN: 1354-1013
EISSN: 1365-2486
Global Change Biology
https://institut-agro-rennes-angers.hal.science/hal-02613874
Global Change Biology, 2020, 26 (3), pp.1319-1337. ⟨10.1111/gcb.14913⟩
https://onlinelibrary.wiley.com/journal/13652486
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.14913
hal-02613874
https://institut-agro-rennes-angers.hal.science/hal-02613874
https://institut-agro-rennes-angers.hal.science/hal-02613874v2/document
https://institut-agro-rennes-angers.hal.science/hal-02613874v2/file/Olmos_et_al-2019-Global_Change_Biology%281%29.pdf
doi:10.1111/gcb.14913
PRODINRA: 492243
WOS: 000506696200001
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/gcb.14913
container_title Global Change Biology
container_volume 26
container_issue 3
container_start_page 1319
op_container_end_page 1337
_version_ 1766362667929305088
spelling ftunivnantes:oai:HAL:hal-02613874v2 2023-05-15T15:32:10+02:00 Spatial synchrony in the response of a long range migratory species ( Salmo salar ) to climate change in the North Atlantic Ocean Olmos, Maxime Payne, Mark, Nevoux, Marie Prévost, Etienne Chaput, Gerald Du Pontavice, Hubert Guitton, Jérôme Sheehan, Timothy Mills, Katherine Rivot, Etienne Écologie et santé des écosystèmes (ESE) Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST Danmarks Tekniske Universitet = Technical University of Denmark (DTU) Ecologie Comportementale et Biologie des Populations de Poissons (ECOBIOP) Université de Pau et des Pays de l'Adour (UPPA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) Fisheries and Oceans Canada (DFO) Northeast Fisheries Science Center (NEFSC) NOAA National Marine Fisheries Service (NMFS) National Oceanic and Atmospheric Administration (NOAA)-National Oceanic and Atmospheric Administration (NOAA) Gulf of Maine Research Institute (GMRI) The research leading to these results has received funding from the Agence Française de la Biodiversité under grant agreement INRAe-AFB SalmoGlob 2016–2018. The study was part-funded by the European Regional Development Fund through the Interreg Channel VA Programme, Project SAMARCH Salmonid Management Round the Channel 2020 https://institut-agro-rennes-angers.hal.science/hal-02613874 https://institut-agro-rennes-angers.hal.science/hal-02613874v2/document https://institut-agro-rennes-angers.hal.science/hal-02613874v2/file/Olmos_et_al-2019-Global_Change_Biology%281%29.pdf https://doi.org/10.1111/gcb.14913 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1111/gcb.14913 hal-02613874 https://institut-agro-rennes-angers.hal.science/hal-02613874 https://institut-agro-rennes-angers.hal.science/hal-02613874v2/document https://institut-agro-rennes-angers.hal.science/hal-02613874v2/file/Olmos_et_al-2019-Global_Change_Biology%281%29.pdf doi:10.1111/gcb.14913 PRODINRA: 492243 WOS: 000506696200001 info:eu-repo/semantics/OpenAccess ISSN: 1354-1013 EISSN: 1365-2486 Global Change Biology https://institut-agro-rennes-angers.hal.science/hal-02613874 Global Change Biology, 2020, 26 (3), pp.1319-1337. ⟨10.1111/gcb.14913⟩ https://onlinelibrary.wiley.com/journal/13652486 hierarchical Bayesian model climate change stage-based life cycle model marine survival bottom-up environmentally driven changes Spatial covariation Atlantic salmon [SDE.MCG]Environmental Sciences/Global Changes [SDV.EE]Life Sciences [q-bio]/Ecology environment info:eu-repo/semantics/article Journal articles 2020 ftunivnantes https://doi.org/10.1111/gcb.14913 2023-03-01T04:09:13Z A major challenge in understanding the response of populations to climate change is to separate the effects of local drivers acting independently on specific populations, from the effects of global drivers that impact multiple populations simultaneously and thereby synchronize their dynamics. We investigated the environmental drivers and the demographic mechanisms of the widespread decline in marine survival rates of Atlantic salmon (Salmo salar) over the last four decades. We developed a hierarchical Bayesian life cycle model to quantify the spatial synchrony in the marine survival of 13 large groups of populations (called stock units, SU) from two continental stock-groupings (CSG) in North America (NA) and Southern Europe (SE) over the period 1971-2014. We found strong coherence in the temporal variation in post-smolt marine survival among the 13 SU of NA and SE. A common North Atlantic trend explains 37% of the temporal variability of the survivals for the 13 SU and declines by a factor 1.8 over the 1971-2014 time series. Synchrony in survival trends is stronger between SU within each CSG. The common trends at the scale of NA and SE capture 60% and 42% of the total variance of temporal variations, respectively. Temporal variations of the post-smolt survival are best explained by the temporal variations of sea surface temperature (SST, negative correlation) and net primary production indices (PP, positive correlation) encountered by salmon in common domains during their marine migration. Specifically, in the Labrador Sea/Grand Banks for NA populations 26% and 24% of variance is captured by SST and PP, respectively and in the Norwegian Sea for SE populations 21% and 12% of variance is captured by SST and PP, respectively. The findings support the hypothesis of a response of salmon populations to large climate induced changes in the North Atlantic simultaneously impacting populations from distant continental habitats. Article in Journal/Newspaper Atlantic salmon Labrador Sea North Atlantic Norwegian Sea Salmo salar Université de Nantes: HAL-UNIV-NANTES Norwegian Sea Global Change Biology 26 3 1319 1337