Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
International audience The most common approach to monitor mysticete acoustic presence is to detect and count their calls in audio records. To implement this method on large datasets, polyvalent and robust automated call detectors are required. Evaluating their performance is essential, to design a...
Published in: | OCEANS 2019 - Marseille |
---|---|
Main Authors: | , , |
Other Authors: | , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2019
|
Subjects: | |
Online Access: | https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf https://doi.org/10.1109/OCEANSE.2019.8867271 |
id |
ftunivnantes:oai:HAL:hal-02398789v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivnantes:oai:HAL:hal-02398789v1 2023-05-15T15:45:10+02:00 Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean Torterotot, Maëlle Samaran, Flore Royer, Jean-Yves Laboratoire Géosciences Océan (LGO) Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) Lab-STICC_ENSTAB_CID_TOMS Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC) École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT) Marseille, France 2019-06 https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf https://doi.org/10.1109/OCEANSE.2019.8867271 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1109/OCEANSE.2019.8867271 hal-02398789 https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf doi:10.1109/OCEANSE.2019.8867271 info:eu-repo/semantics/OpenAccess OCEANS 2019 - Marseille OCEANS 2019 MTS/IEEE https://hal.univ-brest.fr/hal-02398789 OCEANS 2019 MTS/IEEE, Jun 2019, Marseille, France. ⟨10.1109/OCEANSE.2019.8867271⟩ Blue whales bioacoustics detection Performance evaluation long term monitoring [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] info:eu-repo/semantics/conferenceObject Conference papers 2019 ftunivnantes https://doi.org/10.1109/OCEANSE.2019.8867271 2023-03-01T04:04:49Z International audience The most common approach to monitor mysticete acoustic presence is to detect and count their calls in audio records. To implement this method on large datasets, polyvalent and robust automated call detectors are required. Evaluating their performance is essential, to design a detection strategy adapted to study the available datasets. This assessment then enables accurate post-analyses and comparisons of multiple independent surveys. In this paper, we present the performance of a detector based on dictionaries and sparse representation of the signal to detect blue whale stereotyped and non-stereotyped vocalizations (D-calls) in a larg acoustic database with multiple sites and years of recordings in the southern Indian Ocean. Results show that recall increases with the SNR (Sound to Noise Ratio) and reaches 90% for positive SNR stereotyped calls and between 80% and 90% for high SNR D-calls. A detailed analysis of the influence of dictionary composition, SNR of the calls, manual ground truth as well as interference types and abundance, on the performance variability is presented. Eventually, a detection strategy for long term acoustic monitoring is defined. Conference Object Blue whale Université de Nantes: HAL-UNIV-NANTES Indian OCEANS 2019 - Marseille 1 10 |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
Blue whales bioacoustics detection Performance evaluation long term monitoring [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] |
spellingShingle |
Blue whales bioacoustics detection Performance evaluation long term monitoring [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] Torterotot, Maëlle Samaran, Flore Royer, Jean-Yves Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean |
topic_facet |
Blue whales bioacoustics detection Performance evaluation long term monitoring [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] |
description |
International audience The most common approach to monitor mysticete acoustic presence is to detect and count their calls in audio records. To implement this method on large datasets, polyvalent and robust automated call detectors are required. Evaluating their performance is essential, to design a detection strategy adapted to study the available datasets. This assessment then enables accurate post-analyses and comparisons of multiple independent surveys. In this paper, we present the performance of a detector based on dictionaries and sparse representation of the signal to detect blue whale stereotyped and non-stereotyped vocalizations (D-calls) in a larg acoustic database with multiple sites and years of recordings in the southern Indian Ocean. Results show that recall increases with the SNR (Sound to Noise Ratio) and reaches 90% for positive SNR stereotyped calls and between 80% and 90% for high SNR D-calls. A detailed analysis of the influence of dictionary composition, SNR of the calls, manual ground truth as well as interference types and abundance, on the performance variability is presented. Eventually, a detection strategy for long term acoustic monitoring is defined. |
author2 |
Laboratoire Géosciences Océan (LGO) Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) Lab-STICC_ENSTAB_CID_TOMS Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC) École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT) |
format |
Conference Object |
author |
Torterotot, Maëlle Samaran, Flore Royer, Jean-Yves |
author_facet |
Torterotot, Maëlle Samaran, Flore Royer, Jean-Yves |
author_sort |
Torterotot, Maëlle |
title |
Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean |
title_short |
Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean |
title_full |
Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean |
title_fullStr |
Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean |
title_full_unstemmed |
Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean |
title_sort |
detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the southern indian ocean |
publisher |
HAL CCSD |
publishDate |
2019 |
url |
https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf https://doi.org/10.1109/OCEANSE.2019.8867271 |
op_coverage |
Marseille, France |
geographic |
Indian |
geographic_facet |
Indian |
genre |
Blue whale |
genre_facet |
Blue whale |
op_source |
OCEANS 2019 - Marseille OCEANS 2019 MTS/IEEE https://hal.univ-brest.fr/hal-02398789 OCEANS 2019 MTS/IEEE, Jun 2019, Marseille, France. ⟨10.1109/OCEANSE.2019.8867271⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1109/OCEANSE.2019.8867271 hal-02398789 https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf doi:10.1109/OCEANSE.2019.8867271 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1109/OCEANSE.2019.8867271 |
container_title |
OCEANS 2019 - Marseille |
container_start_page |
1 |
op_container_end_page |
10 |
_version_ |
1766379513709592576 |