Coral resistance to ocean acidification linked to increased calcium at the site of calcification

International audience Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO 3) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs. We u...

Full description

Bibliographic Details
Published in:Proceedings of the Royal Society B: Biological Sciences
Main Authors: Decarlo, T., Comeau, S., Cornwall, C., Mcculloch, M. T.
Other Authors: The University of Western Australia (UWA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2018
Subjects:
Online Access:https://hal.science/hal-02322043
https://hal.science/hal-02322043/document
https://hal.science/hal-02322043/file/DeCarlo_et_al_2018_Coral_calcium_calcifying%20_fluid%20%281%29.pdf
https://doi.org/10.1098/rspb.2018.0564
id ftunivnantes:oai:HAL:hal-02322043v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-02322043v1 2023-05-15T17:49:31+02:00 Coral resistance to ocean acidification linked to increased calcium at the site of calcification Decarlo, T. Comeau, S. Cornwall, C. Mcculloch, M. T. The University of Western Australia (UWA) 2018 https://hal.science/hal-02322043 https://hal.science/hal-02322043/document https://hal.science/hal-02322043/file/DeCarlo_et_al_2018_Coral_calcium_calcifying%20_fluid%20%281%29.pdf https://doi.org/10.1098/rspb.2018.0564 en eng HAL CCSD Royal Society, The info:eu-repo/semantics/altIdentifier/doi/10.1098/rspb.2018.0564 hal-02322043 https://hal.science/hal-02322043 https://hal.science/hal-02322043/document https://hal.science/hal-02322043/file/DeCarlo_et_al_2018_Coral_calcium_calcifying%20_fluid%20%281%29.pdf doi:10.1098/rspb.2018.0564 info:eu-repo/semantics/OpenAccess ISSN: 0962-8452 EISSN: 1471-2954 Proceedings of the Royal Society B: Biological Sciences https://hal.science/hal-02322043 Proceedings of the Royal Society B: Biological Sciences, 2018, 285 (1878), pp.20180564. ⟨10.1098/rspb.2018.0564⟩ ocean acidification calcification calcium coral [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography [SDE.MCG]Environmental Sciences/Global Changes info:eu-repo/semantics/article Journal articles 2018 ftunivnantes https://doi.org/10.1098/rspb.2018.0564 2023-02-01T00:53:20Z International audience Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO 3) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs. We use two novel geochem-ical techniques based on boron systematics and Raman spectroscopy, which together provide the first constraints on the sensitivity of coral calcifying fluid calcium concentrations (½Ca 2þ cf) to changing seawater pH. In response to simulated end-of-century pH conditions, Pocillopora damicornis increased ½Ca 2þ cf to as much as 25% above that of seawater and maintained constant calcification rates. Conversely, Acropora youngei displayed less control over ½Ca 2þ cf , and its calcification rates strongly declined at lower seawater pH. Although the role of ½Ca 2þ cf in driving calcification has often been neglected, increasing ½Ca 2þ cf may be a key mechanism enabling more resistant corals to cope with ocean acidification and continue to build CaCO 3 skeletons in a high-CO 2 world. Article in Journal/Newspaper Ocean acidification Université de Nantes: HAL-UNIV-NANTES Proceedings of the Royal Society B: Biological Sciences 285 1878 20180564
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic ocean acidification
calcification
calcium
coral
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
[SDE.MCG]Environmental Sciences/Global Changes
spellingShingle ocean acidification
calcification
calcium
coral
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
[SDE.MCG]Environmental Sciences/Global Changes
Decarlo, T.
Comeau, S.
Cornwall, C.
Mcculloch, M. T.
Coral resistance to ocean acidification linked to increased calcium at the site of calcification
topic_facet ocean acidification
calcification
calcium
coral
[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
[SDE.MCG]Environmental Sciences/Global Changes
description International audience Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO 3) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs. We use two novel geochem-ical techniques based on boron systematics and Raman spectroscopy, which together provide the first constraints on the sensitivity of coral calcifying fluid calcium concentrations (½Ca 2þ cf) to changing seawater pH. In response to simulated end-of-century pH conditions, Pocillopora damicornis increased ½Ca 2þ cf to as much as 25% above that of seawater and maintained constant calcification rates. Conversely, Acropora youngei displayed less control over ½Ca 2þ cf , and its calcification rates strongly declined at lower seawater pH. Although the role of ½Ca 2þ cf in driving calcification has often been neglected, increasing ½Ca 2þ cf may be a key mechanism enabling more resistant corals to cope with ocean acidification and continue to build CaCO 3 skeletons in a high-CO 2 world.
author2 The University of Western Australia (UWA)
format Article in Journal/Newspaper
author Decarlo, T.
Comeau, S.
Cornwall, C.
Mcculloch, M. T.
author_facet Decarlo, T.
Comeau, S.
Cornwall, C.
Mcculloch, M. T.
author_sort Decarlo, T.
title Coral resistance to ocean acidification linked to increased calcium at the site of calcification
title_short Coral resistance to ocean acidification linked to increased calcium at the site of calcification
title_full Coral resistance to ocean acidification linked to increased calcium at the site of calcification
title_fullStr Coral resistance to ocean acidification linked to increased calcium at the site of calcification
title_full_unstemmed Coral resistance to ocean acidification linked to increased calcium at the site of calcification
title_sort coral resistance to ocean acidification linked to increased calcium at the site of calcification
publisher HAL CCSD
publishDate 2018
url https://hal.science/hal-02322043
https://hal.science/hal-02322043/document
https://hal.science/hal-02322043/file/DeCarlo_et_al_2018_Coral_calcium_calcifying%20_fluid%20%281%29.pdf
https://doi.org/10.1098/rspb.2018.0564
genre Ocean acidification
genre_facet Ocean acidification
op_source ISSN: 0962-8452
EISSN: 1471-2954
Proceedings of the Royal Society B: Biological Sciences
https://hal.science/hal-02322043
Proceedings of the Royal Society B: Biological Sciences, 2018, 285 (1878), pp.20180564. ⟨10.1098/rspb.2018.0564⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1098/rspb.2018.0564
hal-02322043
https://hal.science/hal-02322043
https://hal.science/hal-02322043/document
https://hal.science/hal-02322043/file/DeCarlo_et_al_2018_Coral_calcium_calcifying%20_fluid%20%281%29.pdf
doi:10.1098/rspb.2018.0564
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1098/rspb.2018.0564
container_title Proceedings of the Royal Society B: Biological Sciences
container_volume 285
container_issue 1878
container_start_page 20180564
_version_ 1766155885013368832