Oceanography and life history predict contrasting genetic population structure in two Antartic fish species

Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape gene...

Full description

Bibliographic Details
Published in:Evolutionary Applications
Main Authors: Young, Emma F., Belchier, Mark, Hauser, Lorenz, Horsburgh, Gavin J., Meredith, Michael P., Murphy, Eugene J., Pacoal, Sonia, Rock, Jennifer, Tysklind, Niklas, Carvalho, Gary R.
Other Authors: British Antartic Survey, British Antartic survey, School of Aquatic and Fishery Sciences, University of Washington Seattle, Department of Animal and Plant Sciences, MERC Biomolecular Analysis Facility, University of Sheffield, School of Biological Sciences Wellington, New Zealand, Victoria University of Wellington, Ecologie des forêts de Guyane (UMR ECOFOG), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2015
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-02282292
https://hal.archives-ouvertes.fr/hal-02282292/document
https://hal.archives-ouvertes.fr/hal-02282292/file/Young_et_al-2015-Evolutionary_Applications.pdf
https://doi.org/10.1111/eva.12259
id ftunivnantes:oai:HAL:hal-02282292v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-02282292v1 2023-05-15T13:48:50+02:00 Oceanography and life history predict contrasting genetic population structure in two Antartic fish species Young, Emma F. Belchier, Mark Hauser, Lorenz Horsburgh, Gavin J. Meredith, Michael P. Murphy, Eugene J. Pacoal, Sonia Rock, Jennifer Tysklind, Niklas Carvalho, Gary R. British Antartic Survey British Antartic survey School of Aquatic and Fishery Sciences University of Washington Seattle Department of Animal and Plant Sciences, MERC Biomolecular Analysis Facility University of Sheffield School of Biological Sciences Wellington, New Zealand Victoria University of Wellington Ecologie des forêts de Guyane (UMR ECOFOG) Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA) 2015 https://hal.archives-ouvertes.fr/hal-02282292 https://hal.archives-ouvertes.fr/hal-02282292/document https://hal.archives-ouvertes.fr/hal-02282292/file/Young_et_al-2015-Evolutionary_Applications.pdf https://doi.org/10.1111/eva.12259 en eng HAL CCSD Blackwell info:eu-repo/semantics/altIdentifier/doi/10.1111/eva.12259 hal-02282292 https://hal.archives-ouvertes.fr/hal-02282292 https://hal.archives-ouvertes.fr/hal-02282292/document https://hal.archives-ouvertes.fr/hal-02282292/file/Young_et_al-2015-Evolutionary_Applications.pdf doi:10.1111/eva.12259 PRODINRA: 474712 info:eu-repo/semantics/OpenAccess ISSN: 1752-4563 EISSN: 1752-4571 Evolutionary Applications https://hal.archives-ouvertes.fr/hal-02282292 Evolutionary Applications, 2015, 8 (5), pp.486-505. ⟨10.1111/eva.12259⟩ champsocephalus gunnari connectivity individual-basedmodelling notothenia rossii ocean circulation planltonic dispersal population genetics scotia sea [SDV]Life Sciences [q-bio] info:eu-repo/semantics/article Journal articles 2015 ftunivnantes https://doi.org/10.1111/eva.12259 2022-11-30T01:27:43Z Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long‐distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts. Article in Journal/Newspaper Antarc* Antarctic antartic* Notothenia rossii Scotia Sea Université de Nantes: HAL-UNIV-NANTES Antarctic Scotia Sea Evolutionary Applications 8 5 486 509
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic champsocephalus gunnari
connectivity
individual-basedmodelling
notothenia rossii
ocean circulation
planltonic dispersal
population genetics
scotia sea
[SDV]Life Sciences [q-bio]
spellingShingle champsocephalus gunnari
connectivity
individual-basedmodelling
notothenia rossii
ocean circulation
planltonic dispersal
population genetics
scotia sea
[SDV]Life Sciences [q-bio]
Young, Emma F.
Belchier, Mark
Hauser, Lorenz
Horsburgh, Gavin J.
Meredith, Michael P.
Murphy, Eugene J.
Pacoal, Sonia
Rock, Jennifer
Tysklind, Niklas
Carvalho, Gary R.
Oceanography and life history predict contrasting genetic population structure in two Antartic fish species
topic_facet champsocephalus gunnari
connectivity
individual-basedmodelling
notothenia rossii
ocean circulation
planltonic dispersal
population genetics
scotia sea
[SDV]Life Sciences [q-bio]
description Understanding the key drivers of population connectivity in the marine environment is essential for the effective management of natural resources. Although several different approaches to evaluating connectivity have been used, they are rarely integrated quantitatively. Here, we use a ‘seascape genetics’ approach, by combining oceanographic modelling and microsatellite analyses, to understand the dominant influences on the population genetic structure of two Antarctic fishes with contrasting life histories, Champsocephalus gunnari and Notothenia rossii. The close accord between the model projections and empirical genetic structure demonstrated that passive dispersal during the planktonic early life stages is the dominant influence on patterns and extent of genetic structuring in both species. The shorter planktonic phase of C. gunnari restricts direct transport of larvae between distant populations, leading to stronger regional differentiation. By contrast, geographic distance did not affect differentiation in N. rossii, whose longer larval period promotes long‐distance dispersal. Interannual variability in oceanographic flows strongly influenced the projected genetic structure, suggesting that shifts in circulation patterns due to climate change are likely to impact future genetic connectivity and opportunities for local adaptation, resilience and recovery from perturbations. Further development of realistic climate models is required to fully assess such potential impacts.
author2 British Antartic Survey
British Antartic survey
School of Aquatic and Fishery Sciences
University of Washington Seattle
Department of Animal and Plant Sciences, MERC Biomolecular Analysis Facility
University of Sheffield
School of Biological Sciences Wellington, New Zealand
Victoria University of Wellington
Ecologie des forêts de Guyane (UMR ECOFOG)
Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA)
format Article in Journal/Newspaper
author Young, Emma F.
Belchier, Mark
Hauser, Lorenz
Horsburgh, Gavin J.
Meredith, Michael P.
Murphy, Eugene J.
Pacoal, Sonia
Rock, Jennifer
Tysklind, Niklas
Carvalho, Gary R.
author_facet Young, Emma F.
Belchier, Mark
Hauser, Lorenz
Horsburgh, Gavin J.
Meredith, Michael P.
Murphy, Eugene J.
Pacoal, Sonia
Rock, Jennifer
Tysklind, Niklas
Carvalho, Gary R.
author_sort Young, Emma F.
title Oceanography and life history predict contrasting genetic population structure in two Antartic fish species
title_short Oceanography and life history predict contrasting genetic population structure in two Antartic fish species
title_full Oceanography and life history predict contrasting genetic population structure in two Antartic fish species
title_fullStr Oceanography and life history predict contrasting genetic population structure in two Antartic fish species
title_full_unstemmed Oceanography and life history predict contrasting genetic population structure in two Antartic fish species
title_sort oceanography and life history predict contrasting genetic population structure in two antartic fish species
publisher HAL CCSD
publishDate 2015
url https://hal.archives-ouvertes.fr/hal-02282292
https://hal.archives-ouvertes.fr/hal-02282292/document
https://hal.archives-ouvertes.fr/hal-02282292/file/Young_et_al-2015-Evolutionary_Applications.pdf
https://doi.org/10.1111/eva.12259
geographic Antarctic
Scotia Sea
geographic_facet Antarctic
Scotia Sea
genre Antarc*
Antarctic
antartic*
Notothenia rossii
Scotia Sea
genre_facet Antarc*
Antarctic
antartic*
Notothenia rossii
Scotia Sea
op_source ISSN: 1752-4563
EISSN: 1752-4571
Evolutionary Applications
https://hal.archives-ouvertes.fr/hal-02282292
Evolutionary Applications, 2015, 8 (5), pp.486-505. ⟨10.1111/eva.12259⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1111/eva.12259
hal-02282292
https://hal.archives-ouvertes.fr/hal-02282292
https://hal.archives-ouvertes.fr/hal-02282292/document
https://hal.archives-ouvertes.fr/hal-02282292/file/Young_et_al-2015-Evolutionary_Applications.pdf
doi:10.1111/eva.12259
PRODINRA: 474712
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1111/eva.12259
container_title Evolutionary Applications
container_volume 8
container_issue 5
container_start_page 486
op_container_end_page 509
_version_ 1766249838393950208