A type-theoretical definition of weak ω-categories
International audience We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition...
Published in: | 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) |
---|---|
Main Authors: | , |
Other Authors: | , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2017
|
Subjects: | |
Online Access: | https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf https://doi.org/10.1109/LICS.2017.8005124 |
id |
ftunivnantes:oai:HAL:hal-02154846v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivnantes:oai:HAL:hal-02154846v1 2024-05-19T07:42:44+00:00 A type-theoretical definition of weak ω-categories Finster, Eric Mimram, Samuel Gallinette : vers une nouvelle génération d'assistant à la preuve (LS2N - équipe GALLINETTE) Inria Rennes – Bretagne Atlantique Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N) Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Laboratoire des Sciences du Numérique de Nantes (LS2N) Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX) École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS) Reykjavik, Iceland 2017-06-20 https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf https://doi.org/10.1109/LICS.2017.8005124 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/arxiv/1706.02866 info:eu-repo/semantics/altIdentifier/doi/10.1109/LICS.2017.8005124 hal-02154846 https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf ARXIV: 1706.02866 doi:10.1109/LICS.2017.8005124 info:eu-repo/semantics/OpenAccess LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science https://inria.hal.science/hal-02154846 LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, Jun 2017, Reykjavik, Iceland. pp.1-12, ⟨10.1109/LICS.2017.8005124⟩ [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] info:eu-repo/semantics/conferenceObject Conference papers 2017 ftunivnantes https://doi.org/10.1109/LICS.2017.8005124 2024-04-25T00:37:42Z International audience We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, called a coherator. The coherator encodes all operations required to be present in an ω-category: both the compositions of pasting schemes as well as their coherences. Our main contribution is to provide a canonical type-theoretical characterization of pasting schemes as contexts which can be derived from inference rules. Finally, we present an implementation of a corresponding proof system. Conference Object Iceland Université de Nantes: HAL-UNIV-NANTES 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) 1 12 |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] |
spellingShingle |
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] Finster, Eric Mimram, Samuel A type-theoretical definition of weak ω-categories |
topic_facet |
[INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] |
description |
International audience We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, called a coherator. The coherator encodes all operations required to be present in an ω-category: both the compositions of pasting schemes as well as their coherences. Our main contribution is to provide a canonical type-theoretical characterization of pasting schemes as contexts which can be derived from inference rules. Finally, we present an implementation of a corresponding proof system. |
author2 |
Gallinette : vers une nouvelle génération d'assistant à la preuve (LS2N - équipe GALLINETTE) Inria Rennes – Bretagne Atlantique Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N) Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Laboratoire des Sciences du Numérique de Nantes (LS2N) Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX) École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS) |
format |
Conference Object |
author |
Finster, Eric Mimram, Samuel |
author_facet |
Finster, Eric Mimram, Samuel |
author_sort |
Finster, Eric |
title |
A type-theoretical definition of weak ω-categories |
title_short |
A type-theoretical definition of weak ω-categories |
title_full |
A type-theoretical definition of weak ω-categories |
title_fullStr |
A type-theoretical definition of weak ω-categories |
title_full_unstemmed |
A type-theoretical definition of weak ω-categories |
title_sort |
type-theoretical definition of weak ω-categories |
publisher |
HAL CCSD |
publishDate |
2017 |
url |
https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf https://doi.org/10.1109/LICS.2017.8005124 |
op_coverage |
Reykjavik, Iceland |
genre |
Iceland |
genre_facet |
Iceland |
op_source |
LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science https://inria.hal.science/hal-02154846 LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, Jun 2017, Reykjavik, Iceland. pp.1-12, ⟨10.1109/LICS.2017.8005124⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/arxiv/1706.02866 info:eu-repo/semantics/altIdentifier/doi/10.1109/LICS.2017.8005124 hal-02154846 https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf ARXIV: 1706.02866 doi:10.1109/LICS.2017.8005124 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1109/LICS.2017.8005124 |
container_title |
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) |
container_start_page |
1 |
op_container_end_page |
12 |
_version_ |
1799482436742021120 |