A type-theoretical definition of weak ω-categories

International audience We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition...

Full description

Bibliographic Details
Published in:2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
Main Authors: Finster, Eric, Mimram, Samuel
Other Authors: Gallinette : vers une nouvelle génération d'assistant à la preuve (LS2N - équipe GALLINETTE), Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Laboratoire des Sciences du Numérique de Nantes (LS2N), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Format: Conference Object
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://inria.hal.science/hal-02154846
https://inria.hal.science/hal-02154846/document
https://inria.hal.science/hal-02154846/file/mimram_catt.pdf
https://doi.org/10.1109/LICS.2017.8005124
id ftunivnantes:oai:HAL:hal-02154846v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-02154846v1 2024-05-19T07:42:44+00:00 A type-theoretical definition of weak ω-categories Finster, Eric Mimram, Samuel Gallinette : vers une nouvelle génération d'assistant à la preuve (LS2N - équipe GALLINETTE) Inria Rennes – Bretagne Atlantique Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N) Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Laboratoire des Sciences du Numérique de Nantes (LS2N) Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX) École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS) Reykjavik, Iceland 2017-06-20 https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf https://doi.org/10.1109/LICS.2017.8005124 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/arxiv/1706.02866 info:eu-repo/semantics/altIdentifier/doi/10.1109/LICS.2017.8005124 hal-02154846 https://inria.hal.science/hal-02154846 https://inria.hal.science/hal-02154846/document https://inria.hal.science/hal-02154846/file/mimram_catt.pdf ARXIV: 1706.02866 doi:10.1109/LICS.2017.8005124 info:eu-repo/semantics/OpenAccess LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science https://inria.hal.science/hal-02154846 LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, Jun 2017, Reykjavik, Iceland. pp.1-12, ⟨10.1109/LICS.2017.8005124⟩ [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO] [MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT] info:eu-repo/semantics/conferenceObject Conference papers 2017 ftunivnantes https://doi.org/10.1109/LICS.2017.8005124 2024-04-25T00:37:42Z International audience We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, called a coherator. The coherator encodes all operations required to be present in an ω-category: both the compositions of pasting schemes as well as their coherences. Our main contribution is to provide a canonical type-theoretical characterization of pasting schemes as contexts which can be derived from inference rules. Finally, we present an implementation of a corresponding proof system. Conference Object Iceland Université de Nantes: HAL-UNIV-NANTES 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) 1 12
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT]
spellingShingle [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT]
Finster, Eric
Mimram, Samuel
A type-theoretical definition of weak ω-categories
topic_facet [INFO.INFO-LO]Computer Science [cs]/Logic in Computer Science [cs.LO]
[MATH.MATH-CT]Mathematics [math]/Category Theory [math.CT]
description International audience We introduce a dependent type theory whose models are weak ω-categories, generalizing Brunerie's definition of ω-groupoids. Our type theory is based on the definition of ω-categories given by Maltsiniotis, himself inspired by Grothendieck's approach to the definition of ω-groupoids. In this setup, ω-categories are defined as presheaves preserving globular colimits over a certain category, called a coherator. The coherator encodes all operations required to be present in an ω-category: both the compositions of pasting schemes as well as their coherences. Our main contribution is to provide a canonical type-theoretical characterization of pasting schemes as contexts which can be derived from inference rules. Finally, we present an implementation of a corresponding proof system.
author2 Gallinette : vers une nouvelle génération d'assistant à la preuve (LS2N - équipe GALLINETTE)
Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire des Sciences du Numérique de Nantes (LS2N)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)
Laboratoire des Sciences du Numérique de Nantes (LS2N)
Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
format Conference Object
author Finster, Eric
Mimram, Samuel
author_facet Finster, Eric
Mimram, Samuel
author_sort Finster, Eric
title A type-theoretical definition of weak ω-categories
title_short A type-theoretical definition of weak ω-categories
title_full A type-theoretical definition of weak ω-categories
title_fullStr A type-theoretical definition of weak ω-categories
title_full_unstemmed A type-theoretical definition of weak ω-categories
title_sort type-theoretical definition of weak ω-categories
publisher HAL CCSD
publishDate 2017
url https://inria.hal.science/hal-02154846
https://inria.hal.science/hal-02154846/document
https://inria.hal.science/hal-02154846/file/mimram_catt.pdf
https://doi.org/10.1109/LICS.2017.8005124
op_coverage Reykjavik, Iceland
genre Iceland
genre_facet Iceland
op_source LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science
https://inria.hal.science/hal-02154846
LICS 2017 - 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, Jun 2017, Reykjavik, Iceland. pp.1-12, ⟨10.1109/LICS.2017.8005124⟩
op_relation info:eu-repo/semantics/altIdentifier/arxiv/1706.02866
info:eu-repo/semantics/altIdentifier/doi/10.1109/LICS.2017.8005124
hal-02154846
https://inria.hal.science/hal-02154846
https://inria.hal.science/hal-02154846/document
https://inria.hal.science/hal-02154846/file/mimram_catt.pdf
ARXIV: 1706.02866
doi:10.1109/LICS.2017.8005124
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1109/LICS.2017.8005124
container_title 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
container_start_page 1
op_container_end_page 12
_version_ 1799482436742021120