Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores
International audience The last glacial to interglacial transition was studied using down core records of stable isotopes in diatoms and foraminifera as well as surface water temperature, sea ice extent, and ice-rafted debris (IRD) concentrations from a piston core retrieved from the Atlantic sector...
Published in: | Paleoceanography |
---|---|
Main Authors: | , , , , , |
Other Authors: | , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2002
|
Subjects: | |
Online Access: | https://hal.science/hal-02105702 https://hal.science/hal-02105702/document https://hal.science/hal-02105702/file/Shemesh_Paleocean2002.pdf https://doi.org/10.1029/2000PA000599 |
Summary: | International audience The last glacial to interglacial transition was studied using down core records of stable isotopes in diatoms and foraminifera as well as surface water temperature, sea ice extent, and ice-rafted debris (IRD) concentrations from a piston core retrieved from the Atlantic sector of the Southern Ocean. Sea ice is the first variable to change during the last deglaciation, followed by nutrient proxies and sea surface temperature. This sequence of events is independent of the age model adopted for the core. The comparison of the marine records to Antarctic ice CO 2 variation depends on the age model as 14 C determinations cannot be obtained for the time interval of 29.5-14.5 ka. Assuming a constant sedimentation rate for this interval, our data suggest that sea ice and nutrient changes at about 19 ka B.P. lead the increase in atmospheric pCO 2 by approximately 2000 years. Our diatom-based sea ice record is in phase with the sodium record of the Vostok ice core, which is related to sea ice cover and similarly leads the increase in atmospheric CO 2. If gas exchange played a major role in determining glacial to interglacial CO 2 variations, then a delay mechanism of a few thousand years is needed to explain the observed sequence of events. Otherwise, the main cause of atmospheric pCO 2 change must be sought elsewhere, rather than in the Southern Ocean. |
---|