A modeling study of methane hydrate decomposition in contact with the external surface of zeolites

International audience The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabi...

Full description

Bibliographic Details
Published in:Physical Chemistry Chemical Physics
Main Author: Smirnov, Konstantin
Other Authors: Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE), Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2017
Subjects:
Online Access:https://hal.science/hal-01593275
https://doi.org/10.1039/C7CP01985H
id ftunivnantes:oai:HAL:hal-01593275v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-01593275v1 2023-05-15T17:11:48+02:00 A modeling study of methane hydrate decomposition in contact with the external surface of zeolites Smirnov, Konstantin Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE) Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS) 2017 https://hal.science/hal-01593275 https://doi.org/10.1039/C7CP01985H en eng HAL CCSD Royal Society of Chemistry info:eu-repo/semantics/altIdentifier/doi/10.1039/C7CP01985H hal-01593275 https://hal.science/hal-01593275 doi:10.1039/C7CP01985H ISSN: 1463-9076 EISSN: 1463-9084 Physical Chemistry Chemical Physics https://hal.science/hal-01593275 Physical Chemistry Chemical Physics, 2017, 19 (34), pp.23095 - 23105. ⟨10.1039/C7CP01985H⟩ [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry info:eu-repo/semantics/article Journal articles 2017 ftunivnantes https://doi.org/10.1039/C7CP01985H 2023-02-08T09:17:03Z International audience The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite. Article in Journal/Newspaper Methane hydrate Université de Nantes: HAL-UNIV-NANTES Physical Chemistry Chemical Physics 19 34 23095 23105
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry
spellingShingle [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry
Smirnov, Konstantin
A modeling study of methane hydrate decomposition in contact with the external surface of zeolites
topic_facet [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry
description International audience The behavior of methane hydrate (MH) enclosed between the (010) surfaces of the silicalite-1 zeolite was studied by means of molecular dynamics simulations at temperatures of 150 and 250 K. Calculations reveal that the interaction with the hydrophilic surface OH groups destabilizes the clathrate structure of hydrate. While MH mostly conserves the structure in the simulation at the low temperature, thermal motion at the high temperature breaks the fragilized cages of H-bonded water molecules, thus leading to the release of methane. The dissociation proceeds in a layer-by-layer manner starting from the outer parts of the MH slab until complete hydrate decomposition. The released CH4 molecules are absorbed by the microporous solid, whereas water is retained at the surfaces of hydrophobic silicalite and forms a meniscus in the interlayer space. Methane uptake reaches 70% of the silicalite sorption capacity. The energy necessary for the endothermic MH dissociation is supplied by the exothermic methane absorption by the zeolite.
author2 Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516 (LASIRE)
Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Smirnov, Konstantin
author_facet Smirnov, Konstantin
author_sort Smirnov, Konstantin
title A modeling study of methane hydrate decomposition in contact with the external surface of zeolites
title_short A modeling study of methane hydrate decomposition in contact with the external surface of zeolites
title_full A modeling study of methane hydrate decomposition in contact with the external surface of zeolites
title_fullStr A modeling study of methane hydrate decomposition in contact with the external surface of zeolites
title_full_unstemmed A modeling study of methane hydrate decomposition in contact with the external surface of zeolites
title_sort modeling study of methane hydrate decomposition in contact with the external surface of zeolites
publisher HAL CCSD
publishDate 2017
url https://hal.science/hal-01593275
https://doi.org/10.1039/C7CP01985H
genre Methane hydrate
genre_facet Methane hydrate
op_source ISSN: 1463-9076
EISSN: 1463-9084
Physical Chemistry Chemical Physics
https://hal.science/hal-01593275
Physical Chemistry Chemical Physics, 2017, 19 (34), pp.23095 - 23105. ⟨10.1039/C7CP01985H⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1039/C7CP01985H
hal-01593275
https://hal.science/hal-01593275
doi:10.1039/C7CP01985H
op_doi https://doi.org/10.1039/C7CP01985H
container_title Physical Chemistry Chemical Physics
container_volume 19
container_issue 34
container_start_page 23095
op_container_end_page 23105
_version_ 1766068567052124160