Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

[Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU International audience A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Wang, W., Rinke, A., Moore, J.C., Ji, D., Cui, X., Peng, S., Lawrence, D.M., Mcguire, A.D., Burke, E.J., Chen, X., Decharme, B., Koven, C., Macdougall, C., Saito, K., Zhang, W., Alkama, R., Bohn, T.J., Ciais, P., Delire, C., Gouttevin, I., Hajima, T., Krinner, G., Lettenmaier, D.P., Miller, P.A., Smith, B., Sueyoshi, T., Sherstiukov, A.B.
Other Authors: Beijing Normal University (BNU), Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ), National Center for Atmospheric Research Boulder (NCAR), University of Alaska Fairbanks (UAF), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office Exeter, University of Washington Seattle, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Lawrence Berkeley National Laboratory Berkeley (LBNL), School of Earth Sciences Melbourne, Faculty of Science Melbourne, University of Melbourne-University of Melbourne, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Lund University Lund, Arizona State University Tempe (ASU), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ICOS-ATC (ICOS-ATC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Hydrologie-Hydraulique (UR HHLY), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), National Institute of Polar Research Tokyo (NiPR), World Data Centre, All-Russian Research Institute of Hydrometeorological Information
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2016
Subjects:
Online Access:https://hal.science/hal-01587094
https://hal.science/hal-01587094/document
https://hal.science/hal-01587094/file/ly2016-pub00052555.pdf
https://doi.org/10.5194/tc-10-1721-2016
id ftunivnantes:oai:HAL:hal-01587094v1
record_format openpolar
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic snow
modelling
temperature
MODELISATION
NEIGE
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
spellingShingle snow
modelling
temperature
MODELISATION
NEIGE
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
Wang, W.
Rinke, A.
Moore, J.C.
Ji, D.
Cui, X.
Peng, S.
Lawrence, D.M.
Mcguire, A.D.
Burke, E.J.
Chen, X.
Decharme, B.
Koven, C.
Macdougall, C.
Saito, K.
Zhang, W.
Alkama, R.
Bohn, T.J.
Ciais, P.
Delire, C.
Gouttevin, I.
Hajima, T.
Krinner, G.
Lettenmaier, D.P.
Miller, P.A.
Smith, B.
Sueyoshi, T.
Sherstiukov, A.B.
Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
topic_facet snow
modelling
temperature
MODELISATION
NEIGE
[SDE.IE]Environmental Sciences/Environmental Engineering
[SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology
description [Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU International audience A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C−1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.
author2 Beijing Normal University (BNU)
Laboratoire de glaciologie et géophysique de l'environnement (LGGE)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )
National Center for Atmospheric Research Boulder (NCAR)
University of Alaska Fairbanks (UAF)
Met Office Hadley Centre for Climate Change (MOHC)
United Kingdom Met Office Exeter
University of Washington Seattle
Centre national de recherches météorologiques (CNRM)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
Lawrence Berkeley National Laboratory Berkeley (LBNL)
School of Earth Sciences Melbourne
Faculty of Science Melbourne
University of Melbourne-University of Melbourne
Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
Lund University Lund
Arizona State University Tempe (ASU)
Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
ICOS-ATC (ICOS-ATC)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Hydrologie-Hydraulique (UR HHLY)
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
National Institute of Polar Research Tokyo (NiPR)
World Data Centre
All-Russian Research Institute of Hydrometeorological Information
format Article in Journal/Newspaper
author Wang, W.
Rinke, A.
Moore, J.C.
Ji, D.
Cui, X.
Peng, S.
Lawrence, D.M.
Mcguire, A.D.
Burke, E.J.
Chen, X.
Decharme, B.
Koven, C.
Macdougall, C.
Saito, K.
Zhang, W.
Alkama, R.
Bohn, T.J.
Ciais, P.
Delire, C.
Gouttevin, I.
Hajima, T.
Krinner, G.
Lettenmaier, D.P.
Miller, P.A.
Smith, B.
Sueyoshi, T.
Sherstiukov, A.B.
author_facet Wang, W.
Rinke, A.
Moore, J.C.
Ji, D.
Cui, X.
Peng, S.
Lawrence, D.M.
Mcguire, A.D.
Burke, E.J.
Chen, X.
Decharme, B.
Koven, C.
Macdougall, C.
Saito, K.
Zhang, W.
Alkama, R.
Bohn, T.J.
Ciais, P.
Delire, C.
Gouttevin, I.
Hajima, T.
Krinner, G.
Lettenmaier, D.P.
Miller, P.A.
Smith, B.
Sueyoshi, T.
Sherstiukov, A.B.
author_sort Wang, W.
title Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_short Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_full Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_fullStr Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_full_unstemmed Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
title_sort evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
publisher HAL CCSD
publishDate 2016
url https://hal.science/hal-01587094
https://hal.science/hal-01587094/document
https://hal.science/hal-01587094/file/ly2016-pub00052555.pdf
https://doi.org/10.5194/tc-10-1721-2016
genre permafrost
The Cryosphere
genre_facet permafrost
The Cryosphere
op_source ISSN: 1994-0424
EISSN: 1994-0416
The Cryosphere
https://hal.science/hal-01587094
The Cryosphere, 2016, 10 (4), pp.1721-1737. ⟨10.5194/tc-10-1721-2016⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-10-1721-2016
hal-01587094
https://hal.science/hal-01587094
https://hal.science/hal-01587094/document
https://hal.science/hal-01587094/file/ly2016-pub00052555.pdf
doi:10.5194/tc-10-1721-2016
IRSTEA: PUB00052555
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/tc-10-1721-2016
container_title The Cryosphere
container_volume 10
container_issue 4
container_start_page 1721
op_container_end_page 1737
_version_ 1766164298506174464
spelling ftunivnantes:oai:HAL:hal-01587094v1 2023-05-15T17:56:12+02:00 Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region Etude des relations entre température du sol et de l'air dans les modèles de surface : cas des températures hivernales de la zone de permafrost boréal Wang, W. Rinke, A. Moore, J.C. Ji, D. Cui, X. Peng, S. Lawrence, D.M. Mcguire, A.D. Burke, E.J. Chen, X. Decharme, B. Koven, C. Macdougall, C. Saito, K. Zhang, W. Alkama, R. Bohn, T.J. Ciais, P. Delire, C. Gouttevin, I. Hajima, T. Krinner, G. Lettenmaier, D.P. Miller, P.A. Smith, B. Sueyoshi, T. Sherstiukov, A.B. Beijing Normal University (BNU) Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 )-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes 2016-2019 (UGA 2016-2019 ) National Center for Atmospheric Research Boulder (NCAR) University of Alaska Fairbanks (UAF) Met Office Hadley Centre for Climate Change (MOHC) United Kingdom Met Office Exeter University of Washington Seattle Centre national de recherches météorologiques (CNRM) Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP) Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales Toulouse (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS) Lawrence Berkeley National Laboratory Berkeley (LBNL) School of Earth Sciences Melbourne Faculty of Science Melbourne University of Melbourne-University of Melbourne Japan Agency for Marine-Earth Science and Technology (JAMSTEC) Lund University Lund Arizona State University Tempe (ASU) Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) ICOS-ATC (ICOS-ATC) Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) Hydrologie-Hydraulique (UR HHLY) Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) National Institute of Polar Research Tokyo (NiPR) World Data Centre All-Russian Research Institute of Hydrometeorological Information 2016 https://hal.science/hal-01587094 https://hal.science/hal-01587094/document https://hal.science/hal-01587094/file/ly2016-pub00052555.pdf https://doi.org/10.5194/tc-10-1721-2016 en eng HAL CCSD Copernicus info:eu-repo/semantics/altIdentifier/doi/10.5194/tc-10-1721-2016 hal-01587094 https://hal.science/hal-01587094 https://hal.science/hal-01587094/document https://hal.science/hal-01587094/file/ly2016-pub00052555.pdf doi:10.5194/tc-10-1721-2016 IRSTEA: PUB00052555 info:eu-repo/semantics/OpenAccess ISSN: 1994-0424 EISSN: 1994-0416 The Cryosphere https://hal.science/hal-01587094 The Cryosphere, 2016, 10 (4), pp.1721-1737. ⟨10.5194/tc-10-1721-2016⟩ snow modelling temperature MODELISATION NEIGE [SDE.IE]Environmental Sciences/Environmental Engineering [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/article Journal articles 2016 ftunivnantes https://doi.org/10.5194/tc-10-1721-2016 2023-03-01T05:44:06Z [Departement_IRSTEA]Eaux [TR1_IRSTEA]ARCEAU International audience A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C−1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution. Article in Journal/Newspaper permafrost The Cryosphere Université de Nantes: HAL-UNIV-NANTES The Cryosphere 10 4 1721 1737