Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A synthesis
International audience Planet Earth has entered a new geological era, the Anthropocene, in which geologically significant conditions and processes are profoundly altered by human activities (Waters et al., 2016). Among many impacts, human activities have released excessive amounts of carbon dioxide...
Published in: | Estuarine, Coastal and Shelf Science |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2017
|
Subjects: | |
Online Access: | https://hal.sorbonne-universite.fr/hal-01436273 https://hal.sorbonne-universite.fr/hal-01436273/document https://hal.sorbonne-universite.fr/hal-01436273/file/Maugendre_Ocean_acidification.pdf https://doi.org/10.1016/j.ecss.2017.01.006 |
Summary: | International audience Planet Earth has entered a new geological era, the Anthropocene, in which geologically significant conditions and processes are profoundly altered by human activities (Waters et al., 2016). Among many impacts, human activities have released excessive amounts of carbon dioxide (CO2) in the atmosphere leading to warming and ocean acidification: a decrease in pH and CO32- concentration and an increase in CO2 and HCO3- concentrations (Gattuso and Hansson, 2011). On average, at the global scale, surface ocean pH has decreased by 0.1 units since the beginning of the industrial era, equivalent to an increased acidity of 26% (Ciais et al., 2013). An additional decrease of pH is expected by 2100, ranging from 0.07 to 0.33, depending on the CO2 emission scenario considered (Gattuso et al., 2015). |
---|