A reciprocity approach to computing generating functions for permutations with no pattern matches

International audience In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of per...

Full description

Bibliographic Details
Published in:Discrete Mathematics & Theoretical Computer Science
Main Authors: Jones, Miles Eli, Remmel, Jeffrey
Other Authors: Department of Mathematics Univ California San Diego (MATH - UC San Diego), University of California San Diego (UC San Diego), University of California (UC)-University of California (UC), Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel
Format: Conference Object
Language:English
Published: HAL CCSD 2011
Subjects:
Online Access:https://hal.inria.fr/hal-01215054
https://hal.inria.fr/hal-01215054/document
https://hal.inria.fr/hal-01215054/file/dmAO0149.pdf
https://doi.org/10.46298/dmtcs.2933
id ftunivnantes:oai:HAL:hal-01215054v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-01215054v1 2023-05-15T16:53:04+02:00 A reciprocity approach to computing generating functions for permutations with no pattern matches Jones, Miles Eli Remmel, Jeffrey Department of Mathematics Univ California San Diego (MATH - UC San Diego) University of California San Diego (UC San Diego) University of California (UC)-University of California (UC) Bousquet-Mélou Mireille and Wachs Michelle and Hultman Axel Reykjavik, Iceland 2011 https://hal.inria.fr/hal-01215054 https://hal.inria.fr/hal-01215054/document https://hal.inria.fr/hal-01215054/file/dmAO0149.pdf https://doi.org/10.46298/dmtcs.2933 en eng HAL CCSD Discrete Mathematics and Theoretical Computer Science DMTCS info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2933 hal-01215054 https://hal.inria.fr/hal-01215054 https://hal.inria.fr/hal-01215054/document https://hal.inria.fr/hal-01215054/file/dmAO0149.pdf doi:10.46298/dmtcs.2933 info:eu-repo/semantics/OpenAccess ISSN: 1462-7264 EISSN: 1365-8050 Discrete Mathematics and Theoretical Computer Science 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011) https://hal.inria.fr/hal-01215054 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.551-562, ⟨10.46298/dmtcs.2933⟩ permutation pattern match descent left to right minimum symmetric polynomial exponential generating function [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] [INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM] info:eu-repo/semantics/conferenceObject Conference papers 2011 ftunivnantes https://doi.org/10.46298/dmtcs.2933 2022-12-07T02:36:11Z International audience In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the symmetric group $S_n$ with no $τ$ -matches, and for any permutation $σ ∈S_n$, $LRMin(σ )$ is the number of left-to-right minima of $σ$ and $des(σ )$ is the number of descents of $σ$ . Our method does not compute $NM_τ (t,x,y)$ directly, but assumes that $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ where $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ so that $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. We then use the so-called homomorphism method and the combinatorial interpretation of $NM_τ (t,1,y)$ to develop recursions for the coefficient of $U_τ (t,y)$. Dans cet article, nous développons une nouvelle méthode pour calculer les fonctions génératrices de la forme $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ où τ est une permutation, $\mathcal{NM_n}(τ )$ est l'ensemble des permutations dans le groupe symétrique $S_n$ sans $τ$-matches, et pour toute permutation $σ ∈S_n$, $LRMin(σ )$ est le nombre de minima de gauche à droite de $σ$ et $des(σ )$ est le nombre de descentes de $σ$ . Notre méthode ne calcule pas $NM_τ (t,x,y)$ directement, mais suppose que $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ où $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ de sorte que $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. Nous utilisons ensuite la méthode dite "de l'homomorphisme'' et l'interprétation combinatoire de $NM_τ (t,1,y)$ pour développer des récursions sur le coefficient de $U_τ (t,y)$. Conference Object Iceland Université de Nantes: HAL-UNIV-NANTES Gauche ENVELOPE(-62.500,-62.500,-64.233,-64.233) Discrete Mathematics & Theoretical Computer Science DMTCS Proceeding Proceedings
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic permutation
pattern match
descent
left to right minimum
symmetric polynomial
exponential generating function
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
spellingShingle permutation
pattern match
descent
left to right minimum
symmetric polynomial
exponential generating function
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
Jones, Miles Eli
Remmel, Jeffrey
A reciprocity approach to computing generating functions for permutations with no pattern matches
topic_facet permutation
pattern match
descent
left to right minimum
symmetric polynomial
exponential generating function
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM]
description International audience In this paper, we develop a new method to compute generating functions of the form $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ where $τ$ is a permutation that starts with $1, \mathcal{NM_n}(τ )$ is the set of permutations in the symmetric group $S_n$ with no $τ$ -matches, and for any permutation $σ ∈S_n$, $LRMin(σ )$ is the number of left-to-right minima of $σ$ and $des(σ )$ is the number of descents of $σ$ . Our method does not compute $NM_τ (t,x,y)$ directly, but assumes that $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ where $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ so that $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. We then use the so-called homomorphism method and the combinatorial interpretation of $NM_τ (t,1,y)$ to develop recursions for the coefficient of $U_τ (t,y)$. Dans cet article, nous développons une nouvelle méthode pour calculer les fonctions génératrices de la forme $NM_τ (t,x,y) = \sum\limits_{n ≥0} {\frac{t^n} {n!}}∑_{σ ∈\mathcal{lNM_{n}(τ )}} x^{LRMin(σ)} y^{1+des(σ )}$ où τ est une permutation, $\mathcal{NM_n}(τ )$ est l'ensemble des permutations dans le groupe symétrique $S_n$ sans $τ$-matches, et pour toute permutation $σ ∈S_n$, $LRMin(σ )$ est le nombre de minima de gauche à droite de $σ$ et $des(σ )$ est le nombre de descentes de $σ$ . Notre méthode ne calcule pas $NM_τ (t,x,y)$ directement, mais suppose que $NM_τ (t,x,y) = \frac{1}{/ (U_τ (t,y))^x}$ où $U_τ (t,y) = \sum_{n ≥0} U_τ ,n(y) \frac{t^n}{ n!}$ de sorte que $U_τ (t,y) = \frac{1}{ NM_τ (t,1,y)}$. Nous utilisons ensuite la méthode dite "de l'homomorphisme'' et l'interprétation combinatoire de $NM_τ (t,1,y)$ pour développer des récursions sur le coefficient de $U_τ (t,y)$.
author2 Department of Mathematics Univ California San Diego (MATH - UC San Diego)
University of California San Diego (UC San Diego)
University of California (UC)-University of California (UC)
Bousquet-Mélou
Mireille and Wachs
Michelle and Hultman
Axel
format Conference Object
author Jones, Miles Eli
Remmel, Jeffrey
author_facet Jones, Miles Eli
Remmel, Jeffrey
author_sort Jones, Miles Eli
title A reciprocity approach to computing generating functions for permutations with no pattern matches
title_short A reciprocity approach to computing generating functions for permutations with no pattern matches
title_full A reciprocity approach to computing generating functions for permutations with no pattern matches
title_fullStr A reciprocity approach to computing generating functions for permutations with no pattern matches
title_full_unstemmed A reciprocity approach to computing generating functions for permutations with no pattern matches
title_sort reciprocity approach to computing generating functions for permutations with no pattern matches
publisher HAL CCSD
publishDate 2011
url https://hal.inria.fr/hal-01215054
https://hal.inria.fr/hal-01215054/document
https://hal.inria.fr/hal-01215054/file/dmAO0149.pdf
https://doi.org/10.46298/dmtcs.2933
op_coverage Reykjavik, Iceland
long_lat ENVELOPE(-62.500,-62.500,-64.233,-64.233)
geographic Gauche
geographic_facet Gauche
genre Iceland
genre_facet Iceland
op_source ISSN: 1462-7264
EISSN: 1365-8050
Discrete Mathematics and Theoretical Computer Science
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011)
https://hal.inria.fr/hal-01215054
23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.551-562, ⟨10.46298/dmtcs.2933⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.46298/dmtcs.2933
hal-01215054
https://hal.inria.fr/hal-01215054
https://hal.inria.fr/hal-01215054/document
https://hal.inria.fr/hal-01215054/file/dmAO0149.pdf
doi:10.46298/dmtcs.2933
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.46298/dmtcs.2933
container_title Discrete Mathematics & Theoretical Computer Science
container_volume DMTCS Proceeding
container_issue Proceedings
_version_ 1766043584518160384