Using a Machine Learning Model to Assess the Complexity of Stress Systems
International audience We address the task of stress prediction as a sequence tagging problem. We present sequential models with averaged perceptron training for learning primary stress in Romanian words. We use character n-grams and syllable n-grams as features and we account for the consonant-vowe...
Main Authors: | , , , |
---|---|
Other Authors: | , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2014
|
Subjects: | |
Online Access: | https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf |
id |
ftunivnantes:oai:HAL:hal-01095427v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivnantes:oai:HAL:hal-01095427v1 2023-05-15T16:48:06+02:00 Using a Machine Learning Model to Assess the Complexity of Stress Systems Dinu, L. Ciobanu, Alina Maria Chitoran, Ioana Niculae, Vlad Computational Linguistics University of Bucharest (UniBuc) Faculty of Mathematics-Informatics Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus (CLILLAC-ARP (URP_3967)) Université Paris Cité (UPCité) Max Planck Institute for Software Systems (MPI-SWS) Reykjavik, Iceland 2014-05-26 https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf en eng HAL CCSD hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf info:eu-repo/semantics/OpenAccess LREC 9, 2014 Proceedings LREC 9, 2014 https://hal.archives-ouvertes.fr/hal-01095427 LREC 9, 2014, May 2014, Reykjavik, Iceland stress prediction Romanian stress syllabication sequence tagging [SCCO.LING]Cognitive science/Linguistics info:eu-repo/semantics/conferenceObject Conference papers 2014 ftunivnantes 2022-08-10T08:02:19Z International audience We address the task of stress prediction as a sequence tagging problem. We present sequential models with averaged perceptron training for learning primary stress in Romanian words. We use character n-grams and syllable n-grams as features and we account for the consonant-vowel structure of the words. We show in this paper that Romanian stress is predictable, though not deterministic, by using data-driven machine learning techniques. Conference Object Iceland Université de Nantes: HAL-UNIV-NANTES |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
stress prediction Romanian stress syllabication sequence tagging [SCCO.LING]Cognitive science/Linguistics |
spellingShingle |
stress prediction Romanian stress syllabication sequence tagging [SCCO.LING]Cognitive science/Linguistics Dinu, L. Ciobanu, Alina Maria Chitoran, Ioana Niculae, Vlad Using a Machine Learning Model to Assess the Complexity of Stress Systems |
topic_facet |
stress prediction Romanian stress syllabication sequence tagging [SCCO.LING]Cognitive science/Linguistics |
description |
International audience We address the task of stress prediction as a sequence tagging problem. We present sequential models with averaged perceptron training for learning primary stress in Romanian words. We use character n-grams and syllable n-grams as features and we account for the consonant-vowel structure of the words. We show in this paper that Romanian stress is predictable, though not deterministic, by using data-driven machine learning techniques. |
author2 |
Computational Linguistics University of Bucharest (UniBuc) Faculty of Mathematics-Informatics Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus (CLILLAC-ARP (URP_3967)) Université Paris Cité (UPCité) Max Planck Institute for Software Systems (MPI-SWS) |
format |
Conference Object |
author |
Dinu, L. Ciobanu, Alina Maria Chitoran, Ioana Niculae, Vlad |
author_facet |
Dinu, L. Ciobanu, Alina Maria Chitoran, Ioana Niculae, Vlad |
author_sort |
Dinu, L. |
title |
Using a Machine Learning Model to Assess the Complexity of Stress Systems |
title_short |
Using a Machine Learning Model to Assess the Complexity of Stress Systems |
title_full |
Using a Machine Learning Model to Assess the Complexity of Stress Systems |
title_fullStr |
Using a Machine Learning Model to Assess the Complexity of Stress Systems |
title_full_unstemmed |
Using a Machine Learning Model to Assess the Complexity of Stress Systems |
title_sort |
using a machine learning model to assess the complexity of stress systems |
publisher |
HAL CCSD |
publishDate |
2014 |
url |
https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf |
op_coverage |
Reykjavik, Iceland |
genre |
Iceland |
genre_facet |
Iceland |
op_source |
LREC 9, 2014 Proceedings LREC 9, 2014 https://hal.archives-ouvertes.fr/hal-01095427 LREC 9, 2014, May 2014, Reykjavik, Iceland |
op_relation |
hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf |
op_rights |
info:eu-repo/semantics/OpenAccess |
_version_ |
1766038221293092864 |