Using a Machine Learning Model to Assess the Complexity of Stress Systems

International audience We address the task of stress prediction as a sequence tagging problem. We present sequential models with averaged perceptron training for learning primary stress in Romanian words. We use character n-grams and syllable n-grams as features and we account for the consonant-vowe...

Full description

Bibliographic Details
Main Authors: Dinu, L., Ciobanu, Alina Maria, Chitoran, Ioana, Niculae, Vlad
Other Authors: Computational Linguistics, University of Bucharest (UniBuc), Faculty of Mathematics-Informatics, Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus (CLILLAC-ARP (URP_3967)), Université Paris Cité (UPCité), Max Planck Institute for Software Systems (MPI-SWS)
Format: Conference Object
Language:English
Published: HAL CCSD 2014
Subjects:
Online Access:https://hal.archives-ouvertes.fr/hal-01095427
https://hal.archives-ouvertes.fr/hal-01095427/document
https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf
id ftunivnantes:oai:HAL:hal-01095427v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-01095427v1 2023-05-15T16:48:06+02:00 Using a Machine Learning Model to Assess the Complexity of Stress Systems Dinu, L. Ciobanu, Alina Maria Chitoran, Ioana Niculae, Vlad Computational Linguistics University of Bucharest (UniBuc) Faculty of Mathematics-Informatics Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus (CLILLAC-ARP (URP_3967)) Université Paris Cité (UPCité) Max Planck Institute for Software Systems (MPI-SWS) Reykjavik, Iceland 2014-05-26 https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf en eng HAL CCSD hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427 https://hal.archives-ouvertes.fr/hal-01095427/document https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf info:eu-repo/semantics/OpenAccess LREC 9, 2014 Proceedings LREC 9, 2014 https://hal.archives-ouvertes.fr/hal-01095427 LREC 9, 2014, May 2014, Reykjavik, Iceland stress prediction Romanian stress syllabication sequence tagging [SCCO.LING]Cognitive science/Linguistics info:eu-repo/semantics/conferenceObject Conference papers 2014 ftunivnantes 2022-08-10T08:02:19Z International audience We address the task of stress prediction as a sequence tagging problem. We present sequential models with averaged perceptron training for learning primary stress in Romanian words. We use character n-grams and syllable n-grams as features and we account for the consonant-vowel structure of the words. We show in this paper that Romanian stress is predictable, though not deterministic, by using data-driven machine learning techniques. Conference Object Iceland Université de Nantes: HAL-UNIV-NANTES
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic stress prediction
Romanian stress
syllabication
sequence tagging
[SCCO.LING]Cognitive science/Linguistics
spellingShingle stress prediction
Romanian stress
syllabication
sequence tagging
[SCCO.LING]Cognitive science/Linguistics
Dinu, L.
Ciobanu, Alina Maria
Chitoran, Ioana
Niculae, Vlad
Using a Machine Learning Model to Assess the Complexity of Stress Systems
topic_facet stress prediction
Romanian stress
syllabication
sequence tagging
[SCCO.LING]Cognitive science/Linguistics
description International audience We address the task of stress prediction as a sequence tagging problem. We present sequential models with averaged perceptron training for learning primary stress in Romanian words. We use character n-grams and syllable n-grams as features and we account for the consonant-vowel structure of the words. We show in this paper that Romanian stress is predictable, though not deterministic, by using data-driven machine learning techniques.
author2 Computational Linguistics
University of Bucharest (UniBuc)
Faculty of Mathematics-Informatics
Centre de Linguistique Inter-langues, de Lexicologie, de Linguistique Anglaise et de Corpus (CLILLAC-ARP (URP_3967))
Université Paris Cité (UPCité)
Max Planck Institute for Software Systems (MPI-SWS)
format Conference Object
author Dinu, L.
Ciobanu, Alina Maria
Chitoran, Ioana
Niculae, Vlad
author_facet Dinu, L.
Ciobanu, Alina Maria
Chitoran, Ioana
Niculae, Vlad
author_sort Dinu, L.
title Using a Machine Learning Model to Assess the Complexity of Stress Systems
title_short Using a Machine Learning Model to Assess the Complexity of Stress Systems
title_full Using a Machine Learning Model to Assess the Complexity of Stress Systems
title_fullStr Using a Machine Learning Model to Assess the Complexity of Stress Systems
title_full_unstemmed Using a Machine Learning Model to Assess the Complexity of Stress Systems
title_sort using a machine learning model to assess the complexity of stress systems
publisher HAL CCSD
publishDate 2014
url https://hal.archives-ouvertes.fr/hal-01095427
https://hal.archives-ouvertes.fr/hal-01095427/document
https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf
op_coverage Reykjavik, Iceland
genre Iceland
genre_facet Iceland
op_source LREC 9, 2014 Proceedings
LREC 9, 2014
https://hal.archives-ouvertes.fr/hal-01095427
LREC 9, 2014, May 2014, Reykjavik, Iceland
op_relation hal-01095427
https://hal.archives-ouvertes.fr/hal-01095427
https://hal.archives-ouvertes.fr/hal-01095427/document
https://hal.archives-ouvertes.fr/hal-01095427/file/LREC_2014_paper.pdf
op_rights info:eu-repo/semantics/OpenAccess
_version_ 1766038221293092864