Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates

International audience Knowledge of population sizes in delimited spatial regions is crucial for most ecological research. Data from population surveys are collected with strip, line, or point transects sampling. These data are positively skewed and spatially autocorrelated, which makes estimation o...

Full description

Bibliographic Details
Published in:Marine Environmental Research
Main Authors: Bellier, Edwige, Monestiez, Pascal, Certain, Grégoire, Chadœuf, Joel, Bretagnolle, Vincent
Other Authors: Biostatistique et Processus Spatiaux (BioSP), Institut National de la Recherche Agronomique (INRA), Institute of Marine Research Bergen (IMR), University of Bergen (UiB), Centre d'Études Biologiques de Chizé (CEBC), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), French Government (MEDD); University of La Rochelle; Communaute de Commune de La Rochelle; Provence Alpes Cotes d'Azur province; Institut National pour la Recherche Agronomique (INRA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-00959334
https://doi.org/10.1002/env.2240
id ftunivnantes:oai:HAL:hal-00959334v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-00959334v1 2023-05-15T15:56:00+02:00 Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates Bellier, Edwige Monestiez, Pascal, Certain, Grégoire Chadœuf, Joel Bretagnolle, Vincent Biostatistique et Processus Spatiaux (BioSP) Institut National de la Recherche Agronomique (INRA) Institute of Marine Research Bergen (IMR) University of Bergen (UiB) Centre d'Études Biologiques de Chizé (CEBC) Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS) French Government (MEDD); University of La Rochelle; Communaute de Commune de La Rochelle; Provence Alpes Cotes d'Azur province; Institut National pour la Recherche Agronomique (INRA) 2013 https://hal.science/hal-00959334 https://doi.org/10.1002/env.2240 en eng HAL CCSD Wiley info:eu-repo/semantics/altIdentifier/doi/10.1002/env.2240 hal-00959334 https://hal.science/hal-00959334 doi:10.1002/env.2240 PRODINRA: 257516 WOS: 000327247100005 ISSN: 1180-4009 EISSN: 1099-095X Environmetrics https://hal.science/hal-00959334 Environmetrics, 2013, 24 (7), pp.476-488. ⟨10.1002/env.2240⟩ Poisson block kriging hierarchical model distribution free nested covariance function non-stationarity block bootstrap [SDE]Environmental Sciences info:eu-repo/semantics/article Journal articles 2013 ftunivnantes https://doi.org/10.1002/env.2240 2023-02-07T23:51:04Z International audience Knowledge of population sizes in delimited spatial regions is crucial for most ecological research. Data from population surveys are collected with strip, line, or point transects sampling. These data are positively skewed and spatially autocorrelated, which makes estimation of uncertainty in the population size difficult. Thus, we propose a novel spatial-based estimator from a hierarchical spatial model for count data where the inhomogeneous animal density is decomposed into a deterministic trend related to potential habitat and a stationary latent field modeled by geostatistics. An empirical estimate of the latent variable is obtained including corrective terms for non-stationarity and variance resulting from a Poisson distribution of sightings. A novel block kriging estimator that takes into account both non-stationarity and the nature of count data is derived to obtain a spatial estimate of animal total abundance and variance of errors of prediction. From spatial simulated count data and real count data of common guillemot wintering in the Bay of Biscay (France), we compare mean population size and variance estimates obtained from our model-based approach to the design-based estimator (i.e., block bootstrap). The novel Poisson block kriging estimates greatly reduces uncertainty of population size estimates while block bootstrap provides larger uncertainties. Article in Journal/Newspaper common guillemot Université de Nantes: HAL-UNIV-NANTES Marine Environmental Research 180 105709
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Poisson block kriging
hierarchical model
distribution free
nested covariance function
non-stationarity
block bootstrap
[SDE]Environmental Sciences
spellingShingle Poisson block kriging
hierarchical model
distribution free
nested covariance function
non-stationarity
block bootstrap
[SDE]Environmental Sciences
Bellier, Edwige
Monestiez, Pascal,
Certain, Grégoire
Chadœuf, Joel
Bretagnolle, Vincent
Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
topic_facet Poisson block kriging
hierarchical model
distribution free
nested covariance function
non-stationarity
block bootstrap
[SDE]Environmental Sciences
description International audience Knowledge of population sizes in delimited spatial regions is crucial for most ecological research. Data from population surveys are collected with strip, line, or point transects sampling. These data are positively skewed and spatially autocorrelated, which makes estimation of uncertainty in the population size difficult. Thus, we propose a novel spatial-based estimator from a hierarchical spatial model for count data where the inhomogeneous animal density is decomposed into a deterministic trend related to potential habitat and a stationary latent field modeled by geostatistics. An empirical estimate of the latent variable is obtained including corrective terms for non-stationarity and variance resulting from a Poisson distribution of sightings. A novel block kriging estimator that takes into account both non-stationarity and the nature of count data is derived to obtain a spatial estimate of animal total abundance and variance of errors of prediction. From spatial simulated count data and real count data of common guillemot wintering in the Bay of Biscay (France), we compare mean population size and variance estimates obtained from our model-based approach to the design-based estimator (i.e., block bootstrap). The novel Poisson block kriging estimates greatly reduces uncertainty of population size estimates while block bootstrap provides larger uncertainties.
author2 Biostatistique et Processus Spatiaux (BioSP)
Institut National de la Recherche Agronomique (INRA)
Institute of Marine Research Bergen (IMR)
University of Bergen (UiB)
Centre d'Études Biologiques de Chizé (CEBC)
Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
French Government (MEDD); University of La Rochelle; Communaute de Commune de La Rochelle; Provence Alpes Cotes d'Azur province; Institut National pour la Recherche Agronomique (INRA)
format Article in Journal/Newspaper
author Bellier, Edwige
Monestiez, Pascal,
Certain, Grégoire
Chadœuf, Joel
Bretagnolle, Vincent
author_facet Bellier, Edwige
Monestiez, Pascal,
Certain, Grégoire
Chadœuf, Joel
Bretagnolle, Vincent
author_sort Bellier, Edwige
title Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
title_short Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
title_full Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
title_fullStr Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
title_full_unstemmed Reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
title_sort reducing the uncertainty of wildlife population abundance: model-based versus design-based estimates
publisher HAL CCSD
publishDate 2013
url https://hal.science/hal-00959334
https://doi.org/10.1002/env.2240
genre common guillemot
genre_facet common guillemot
op_source ISSN: 1180-4009
EISSN: 1099-095X
Environmetrics
https://hal.science/hal-00959334
Environmetrics, 2013, 24 (7), pp.476-488. ⟨10.1002/env.2240⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1002/env.2240
hal-00959334
https://hal.science/hal-00959334
doi:10.1002/env.2240
PRODINRA: 257516
WOS: 000327247100005
op_doi https://doi.org/10.1002/env.2240
container_title Marine Environmental Research
container_volume 180
container_start_page 105709
_version_ 1766391486888280064