Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation
International audience A hot topic in ice sheet modelling is to run prognostic simulations over the next 100 years to investigate the impact of Antarctica and Greenland ice sheets on sea level change. Such simulations require an initial state of ice sheets which must be as close as possible to what...
Main Authors: | , , |
---|---|
Other Authors: | , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2013
|
Subjects: | |
Online Access: | https://hal.inria.fr/hal-00837845 |
id |
ftunivnantes:oai:HAL:hal-00837845v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université de Nantes: HAL-UNIV-NANTES |
op_collection_id |
ftunivnantes |
language |
English |
topic |
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
spellingShingle |
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology Bonan, Bertrand Nodet, Maëlle Ritz, Catherine Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation |
topic_facet |
[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology |
description |
International audience A hot topic in ice sheet modelling is to run prognostic simulations over the next 100 years to investigate the impact of Antarctica and Greenland ice sheets on sea level change. Such simulations require an initial state of ice sheets which must be as close as possible to what is currently observed. Large scale ice sheet dynamical models are mostly governed by the following input parameters and variables: basal dragging coefficient, bedrock topography, surface elevation, temperature field. But we do not have satisfying initial states for simulations. Fortunately, some observations are available such as surface and (sparse) bedrock topography, surface velocities, surface elevation trend. The use of advanced inverse methods appears to be the adequate tool to produce satisfying initial states. We develop ensemble methods based on Ensemble Kalman Filter (EnKF) to infer optimal actual states for ice sheet model initialisation thanks to available observations. EnKF is an efficient Monte-Carlo method based on a Gaussian approximation. Contrary to variational approach or traditional Kalman Filter, EnKF does not require full or reduced state error covariance matrices but represents them by a large stochastic ensemble of model realisations. Furthermore, the size of ensembles are generally smaller than other stochastic methods. EnKF has been successfully used in a large community, including ocean and atmospheric sciences. As we first want to assess the validity of the method we begin with twin experiments (simulated observations) with a simple flowline large scale model, Winnie, as a first step toward data assimilation for a full 3D ice sheet model, GRISLI. Winnie (as GRISLI) is an hybrid SIA/SSA ice sheet model and, as a flowline model, is a good prototype to valide our methods. Here we try here to retrieve the prescribed following input parameters and variables: basal sliding coefficients, bedrock topography and ice thickness thanks to our simulated observations of surface elevation, surface ... |
author2 |
Modelling, Observations, Identification for Environmental Sciences (MOISE) Inria Grenoble - Rhône-Alpes Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK) Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) EDGe Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) |
format |
Conference Object |
author |
Bonan, Bertrand Nodet, Maëlle Ritz, Catherine |
author_facet |
Bonan, Bertrand Nodet, Maëlle Ritz, Catherine |
author_sort |
Bonan, Bertrand |
title |
Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation |
title_short |
Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation |
title_full |
Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation |
title_fullStr |
Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation |
title_full_unstemmed |
Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation |
title_sort |
data assimilation based on ensemble kalman filtering for ice sheet initialisation |
publisher |
HAL CCSD |
publishDate |
2013 |
url |
https://hal.inria.fr/hal-00837845 |
op_coverage |
Vienna, Austria |
geographic |
Greenland |
geographic_facet |
Greenland |
genre |
Antarc* Antarctica Greenland Ice Sheet |
genre_facet |
Antarc* Antarctica Greenland Ice Sheet |
op_source |
EGU General Assembly 2013 https://hal.inria.fr/hal-00837845 EGU General Assembly 2013, Apr 2013, Vienna, Austria |
op_relation |
hal-00837845 https://hal.inria.fr/hal-00837845 |
_version_ |
1766257070274772992 |
spelling |
ftunivnantes:oai:HAL:hal-00837845v1 2023-05-15T13:52:38+02:00 Data assimilation based on Ensemble Kalman filtering for ice sheet initialisation Bonan, Bertrand Nodet, Maëlle Ritz, Catherine Modelling, Observations, Identification for Environmental Sciences (MOISE) Inria Grenoble - Rhône-Alpes Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK) Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS) EDGe Laboratoire de glaciologie et géophysique de l'environnement (LGGE) Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG) Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) Vienna, Austria 2013-04-07 https://hal.inria.fr/hal-00837845 en eng HAL CCSD hal-00837845 https://hal.inria.fr/hal-00837845 EGU General Assembly 2013 https://hal.inria.fr/hal-00837845 EGU General Assembly 2013, Apr 2013, Vienna, Austria [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] [SDU.STU.GL]Sciences of the Universe [physics]/Earth Sciences/Glaciology info:eu-repo/semantics/conferenceObject Conference papers 2013 ftunivnantes 2023-03-01T00:01:29Z International audience A hot topic in ice sheet modelling is to run prognostic simulations over the next 100 years to investigate the impact of Antarctica and Greenland ice sheets on sea level change. Such simulations require an initial state of ice sheets which must be as close as possible to what is currently observed. Large scale ice sheet dynamical models are mostly governed by the following input parameters and variables: basal dragging coefficient, bedrock topography, surface elevation, temperature field. But we do not have satisfying initial states for simulations. Fortunately, some observations are available such as surface and (sparse) bedrock topography, surface velocities, surface elevation trend. The use of advanced inverse methods appears to be the adequate tool to produce satisfying initial states. We develop ensemble methods based on Ensemble Kalman Filter (EnKF) to infer optimal actual states for ice sheet model initialisation thanks to available observations. EnKF is an efficient Monte-Carlo method based on a Gaussian approximation. Contrary to variational approach or traditional Kalman Filter, EnKF does not require full or reduced state error covariance matrices but represents them by a large stochastic ensemble of model realisations. Furthermore, the size of ensembles are generally smaller than other stochastic methods. EnKF has been successfully used in a large community, including ocean and atmospheric sciences. As we first want to assess the validity of the method we begin with twin experiments (simulated observations) with a simple flowline large scale model, Winnie, as a first step toward data assimilation for a full 3D ice sheet model, GRISLI. Winnie (as GRISLI) is an hybrid SIA/SSA ice sheet model and, as a flowline model, is a good prototype to valide our methods. Here we try here to retrieve the prescribed following input parameters and variables: basal sliding coefficients, bedrock topography and ice thickness thanks to our simulated observations of surface elevation, surface ... Conference Object Antarc* Antarctica Greenland Ice Sheet Université de Nantes: HAL-UNIV-NANTES Greenland |