Impact of the Mertz Glacier Tongue calving on dense water formation and export
International audience Antarctic Bottom Water (AABW) is a critical component of the global climate system, occupying the abyssal layer of the World Ocean and driving the lower limb of the global meridional overturning circulation. Around East Antarctica, the dense shelf water (DSW) precursor to AABW...
Published in: | Nature Communications |
---|---|
Main Authors: | , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2011
|
Subjects: | |
Online Access: | https://hal.science/hal-00755141 https://hal.science/hal-00755141/document https://hal.science/hal-00755141/file/ncomms1156.pdf https://doi.org/10.1038/NCOMMS1156 |
Summary: | International audience Antarctic Bottom Water (AABW) is a critical component of the global climate system, occupying the abyssal layer of the World Ocean and driving the lower limb of the global meridional overturning circulation. Around East Antarctica, the dense shelf water (DSW) precursor to AABW is predominantly formed by enhanced sea ice formation in coastal polynyas. The dominant source region of AABW supply to the Australian-Antarctic Basin is the Adélie and George V Land coast, in particular, polynyas formed in the western lee of the Mertz Glacier Tongue (MGT) and the grounded iceberg B9b over the Adélie and the Mertz Depressions, respectively. The calving of the MGT, which occurred on 12-13 February 2010, dramatically changed the environment for producing DSW. Here, we assess its impact using a state-of-the-art ice-ocean model. The model shows that oceanic circulation and sea ice production in the region changes immediately after the calving event, and that the DSW export is reduced by up to 23%. |
---|