Data assimilation methods for ice-sheet model initialisation

International audience A hot topic in ice-sheet modelling is to run prognostic simulations over the next 100 years, to investigate the impact of Antarctica and Greenland ice-sheets on sea-level change. Such simulations require an initial state of the ice-sheets which must be as close as possible to...

Full description

Bibliographic Details
Main Authors: Nodet, Maëlle, Bonan, Bertrand, Ritz, Catherine
Other Authors: Modelling, Observations, Identification for Environmental Sciences (MOISE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), EDGe, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Format: Conference Object
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.inria.fr/hal-00715827
Description
Summary:International audience A hot topic in ice-sheet modelling is to run prognostic simulations over the next 100 years, to investigate the impact of Antarctica and Greenland ice-sheets on sea-level change. Such simulations require an initial state of the ice-sheets which must be as close as possible to what is currently observed. The use of advanced inverse methods appears to be the adequate tool to produce such an initial state. Criteria for a good initial state are: an optimal fit to available observations, such as surface and (sparse) bedrock topography, surface velocities, surface elevation trend. Large scale ice-sheet dynamical models are mostly governed by the following input parameters and variables: basal dragging coefficient, bedrock topography, surface elevation, temperature field. We use variational and sequential data assimilation methods to infer these inputs parameters from available observations. To address this problem we perform identical twin experiments on the realistic flow-line large-scale ice-sheet model GRISLI. Thanks to the model, we simulate observations from a set of given input parameters (bedrock topography, basal sliding field, surface elevation), and we then try to recover these parameters with the generated observations. We also run several diagnostics to assess the quality of the recovered parameters. In the light of the results of our numerical twin experiments, we will discuss advantages and drawbacks of the state-of-the-art data assimilation methods currently used for the initialization problem of ice-sheet models