Mixing in the Romanche Fracture Zone

International audience The Romanche Fracture Zone is a major gap in the Mid-Atlantic Ridge at the equator, which is deep enough to allow significant eastward flows of Antarctic Bottom Water from the Brazil Basin to the Sierra Leone and Guinea Abyssal Plains. While flowing through the Romanche Fractu...

Full description

Bibliographic Details
Main Authors: Ferron, Bruno, Mercier, Herlé, Speer, Kevin, Gargett, Ann, Polzin, Kurt
Other Authors: Laboratoire de physique des océans (LPO), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Institute of Ocean Sciences Sidney (IOS), Fisheries and Oceans Canada (DFO), Woods Hole Oceanographic Institution (WHOI)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 1998
Subjects:
Online Access:https://hal.science/hal-00267704
https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2
id ftunivnantes:oai:HAL:hal-00267704v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-00267704v1 2023-05-15T14:00:44+02:00 Mixing in the Romanche Fracture Zone Ferron, Bruno Mercier, Herlé Speer, Kevin Gargett, Ann, Polzin, Kurt Laboratoire de physique des océans (LPO) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) Institute of Ocean Sciences Sidney (IOS) Fisheries and Oceans Canada (DFO) Woods Hole Oceanographic Institution (WHOI) 1998-10 https://hal.science/hal-00267704 https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2 en eng HAL CCSD American Meteorological Society info:eu-repo/semantics/altIdentifier/doi/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2 hal-00267704 https://hal.science/hal-00267704 doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2 ISSN: 0022-3670 EISSN: 1520-0485 Journal of Physical Oceanography https://hal.science/hal-00267704 Journal of Physical Oceanography, 1998, 28 (10), pp.1929-1945. &#x27E8;10.1175/1520-0485(1998)0282.0.CO;2&#x27E9; [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography info:eu-repo/semantics/article Journal articles 1998 ftunivnantes https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2 https://doi.org/10.1175/1520-0485(1998)0282.0.CO;2 2023-02-08T06:21:28Z International audience The Romanche Fracture Zone is a major gap in the Mid-Atlantic Ridge at the equator, which is deep enough to allow significant eastward flows of Antarctic Bottom Water from the Brazil Basin to the Sierra Leone and Guinea Abyssal Plains. While flowing through the Romanche Fracture Zone, bottom-water properties are strongly modified due to intense vertical mixing. The diapycnal mixing coefficient in the bottom water of the Romanche Fracture Zone is estimated by using the finestructure of CTD profiles, the microstructure of high-resolution profiler data, and by constructing a heat budget from current meter data. The finestructure of density profiles is described using the Thorpe scales LT. It is shown from microstructure data taken in the bottom water that the Ozmidov scale LO is related to LT by the linear relationship LO = 0.95LT, similar to other studies, which allows an estimate of the diapycnal mixing coefficient using the Osborn relation. The Thorpe scale and the diapycnal mixing coefficient estimates show enhanced mixing downstream (eastward) of the main sill of the Romanche Fracture Zone. In this region, a mean diapycnal mixing coefficient of about 1000 × 10−4 m2 s−1 is found for the bottom water. Estimates of cross-isothermal mixing coefficient derived from the heat budgets constructed downstream of the current meter arrays deployed in the Romanche Fracture Zone and the nearby Chain Fracture Zone are in agreement with the finestructure estimates of the diapycnal mixing coefficient within the Romanche Fracture Zone. Although the two fracture zones occupy only 0.4% of the area covered by the Sierra Leone and Guinea Abyssal Plains, the diffusive heat fluxes across the 1.4°C isotherm in the Romanche and Chain Fracture Zones are half that found over the abyssal plains across the 1.8°C isotherm, emphasizing the role of these passages for bottom-water property modifications. Article in Journal/Newspaper Antarc* Antarctic Université de Nantes: HAL-UNIV-NANTES Antarctic Mid-Atlantic Ridge Osborn ENVELOPE(-120.378,-120.378,56.604,56.604)
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
spellingShingle [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
Ferron, Bruno
Mercier, Herlé
Speer, Kevin
Gargett, Ann,
Polzin, Kurt
Mixing in the Romanche Fracture Zone
topic_facet [SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography
description International audience The Romanche Fracture Zone is a major gap in the Mid-Atlantic Ridge at the equator, which is deep enough to allow significant eastward flows of Antarctic Bottom Water from the Brazil Basin to the Sierra Leone and Guinea Abyssal Plains. While flowing through the Romanche Fracture Zone, bottom-water properties are strongly modified due to intense vertical mixing. The diapycnal mixing coefficient in the bottom water of the Romanche Fracture Zone is estimated by using the finestructure of CTD profiles, the microstructure of high-resolution profiler data, and by constructing a heat budget from current meter data. The finestructure of density profiles is described using the Thorpe scales LT. It is shown from microstructure data taken in the bottom water that the Ozmidov scale LO is related to LT by the linear relationship LO = 0.95LT, similar to other studies, which allows an estimate of the diapycnal mixing coefficient using the Osborn relation. The Thorpe scale and the diapycnal mixing coefficient estimates show enhanced mixing downstream (eastward) of the main sill of the Romanche Fracture Zone. In this region, a mean diapycnal mixing coefficient of about 1000 × 10−4 m2 s−1 is found for the bottom water. Estimates of cross-isothermal mixing coefficient derived from the heat budgets constructed downstream of the current meter arrays deployed in the Romanche Fracture Zone and the nearby Chain Fracture Zone are in agreement with the finestructure estimates of the diapycnal mixing coefficient within the Romanche Fracture Zone. Although the two fracture zones occupy only 0.4% of the area covered by the Sierra Leone and Guinea Abyssal Plains, the diffusive heat fluxes across the 1.4°C isotherm in the Romanche and Chain Fracture Zones are half that found over the abyssal plains across the 1.8°C isotherm, emphasizing the role of these passages for bottom-water property modifications.
author2 Laboratoire de physique des océans (LPO)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Institute of Ocean Sciences Sidney (IOS)
Fisheries and Oceans Canada (DFO)
Woods Hole Oceanographic Institution (WHOI)
format Article in Journal/Newspaper
author Ferron, Bruno
Mercier, Herlé
Speer, Kevin
Gargett, Ann,
Polzin, Kurt
author_facet Ferron, Bruno
Mercier, Herlé
Speer, Kevin
Gargett, Ann,
Polzin, Kurt
author_sort Ferron, Bruno
title Mixing in the Romanche Fracture Zone
title_short Mixing in the Romanche Fracture Zone
title_full Mixing in the Romanche Fracture Zone
title_fullStr Mixing in the Romanche Fracture Zone
title_full_unstemmed Mixing in the Romanche Fracture Zone
title_sort mixing in the romanche fracture zone
publisher HAL CCSD
publishDate 1998
url https://hal.science/hal-00267704
https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2
long_lat ENVELOPE(-120.378,-120.378,56.604,56.604)
geographic Antarctic
Mid-Atlantic Ridge
Osborn
geographic_facet Antarctic
Mid-Atlantic Ridge
Osborn
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_source ISSN: 0022-3670
EISSN: 1520-0485
Journal of Physical Oceanography
https://hal.science/hal-00267704
Journal of Physical Oceanography, 1998, 28 (10), pp.1929-1945. &#x27E8;10.1175/1520-0485(1998)0282.0.CO;2&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2
hal-00267704
https://hal.science/hal-00267704
doi:10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2
op_doi https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)0282.0.CO;2
_version_ 1766270080522387456