Van der Waals interactions in systems involving gas hydrates.

33 pages International audience The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds that are often encountered in oil and gas industry, where they pose problems (pipeline plugging, .) and represent opportunitie...

Full description

Bibliographic Details
Published in:Fluid Phase Equilibria
Main Authors: Bonnefoy, Olivier, Gruy, Frédéric, Herri, Jean-Michel
Other Authors: Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT), Département Géochimie, environnement, écoulement, réacteurs industriels et cristallisation (GENERIC-ENSMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN, Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE), Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2005
Subjects:
Online Access:https://hal.science/hal-00125056
https://hal.science/hal-00125056/document
https://hal.science/hal-00125056/file/OB-FluidPhaseEq.pdf
https://doi.org/10.1016/j.fluid.2005.02.004
id ftunivnantes:oai:HAL:hal-00125056v1
record_format openpolar
spelling ftunivnantes:oai:HAL:hal-00125056v1 2023-05-15T17:12:01+02:00 Van der Waals interactions in systems involving gas hydrates. Bonnefoy, Olivier Gruy, Frédéric Herri, Jean-Michel Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE) École des Mines de Saint-Étienne (Mines Saint-Étienne MSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Département Géochimie, environnement, écoulement, réacteurs industriels et cristallisation (GENERIC-ENSMSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS) 2005 https://hal.science/hal-00125056 https://hal.science/hal-00125056/document https://hal.science/hal-00125056/file/OB-FluidPhaseEq.pdf https://doi.org/10.1016/j.fluid.2005.02.004 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2005.02.004 hal-00125056 https://hal.science/hal-00125056 https://hal.science/hal-00125056/document https://hal.science/hal-00125056/file/OB-FluidPhaseEq.pdf doi:10.1016/j.fluid.2005.02.004 info:eu-repo/semantics/OpenAccess ISSN: 0378-3812 Fluid Phase Equilibria https://hal.science/hal-00125056 Fluid Phase Equilibria, 2005, 231(2), pp.176. ⟨10.1016/j.fluid.2005.02.004⟩ Methane gas hydrate Hamaker constant Agglomeration Dielectric response function Van der Waals interaction potential [SPI.OTHER]Engineering Sciences [physics]/Other info:eu-repo/semantics/article Journal articles 2005 ftunivnantes https://doi.org/10.1016/j.fluid.2005.02.004 2023-03-01T06:25:46Z 33 pages International audience The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds that are often encountered in oil and gas industry, where they pose problems (pipeline plugging, .) and represent opportunities (energy resources, gas transport, . . . ). We focus on methane hydrate, which is the most common one, and calculate its Hamaker constant. Two methods are used and lead to results in good agreement. The Hamaker, microscopic, approach gives a first estimate of the Hamaker constant of 4.59×10−21 J for the hydrate-water-hydrate system. The Lifshitz, macroscopic, method used in combination with the Kramers-Kronig relationship gives a value of 8.25 × 10−21 J. The Hamaker constant is also computed for three phases systems (gas hydrate clathrate and liquid water with ice, dodecane, quartz, sapphire, teflon, metals). The interaction potential in different geometrical configurations is then calculated by a hybrid method and various cases of practical interest are studied. Article in Journal/Newspaper Methane hydrate Université de Nantes: HAL-UNIV-NANTES Fluid Phase Equilibria 231 2 176 187
institution Open Polar
collection Université de Nantes: HAL-UNIV-NANTES
op_collection_id ftunivnantes
language English
topic Methane gas hydrate
Hamaker constant
Agglomeration
Dielectric response function
Van der Waals interaction potential
[SPI.OTHER]Engineering Sciences [physics]/Other
spellingShingle Methane gas hydrate
Hamaker constant
Agglomeration
Dielectric response function
Van der Waals interaction potential
[SPI.OTHER]Engineering Sciences [physics]/Other
Bonnefoy, Olivier
Gruy, Frédéric
Herri, Jean-Michel
Van der Waals interactions in systems involving gas hydrates.
topic_facet Methane gas hydrate
Hamaker constant
Agglomeration
Dielectric response function
Van der Waals interaction potential
[SPI.OTHER]Engineering Sciences [physics]/Other
description 33 pages International audience The goal of this work is to quantify the Van der Waals interactions in systems involving gas hydrates. Gas hydrates are crystalline compounds that are often encountered in oil and gas industry, where they pose problems (pipeline plugging, .) and represent opportunities (energy resources, gas transport, . . . ). We focus on methane hydrate, which is the most common one, and calculate its Hamaker constant. Two methods are used and lead to results in good agreement. The Hamaker, microscopic, approach gives a first estimate of the Hamaker constant of 4.59×10−21 J for the hydrate-water-hydrate system. The Lifshitz, macroscopic, method used in combination with the Kramers-Kronig relationship gives a value of 8.25 × 10−21 J. The Hamaker constant is also computed for three phases systems (gas hydrate clathrate and liquid water with ice, dodecane, quartz, sapphire, teflon, metals). The interaction potential in different geometrical configurations is then calculated by a hybrid method and various cases of practical interest are studied.
author2 Centre Sciences des Processus Industriels et Naturels (SPIN-ENSMSE)
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)
Département Géochimie, environnement, écoulement, réacteurs industriels et cristallisation (GENERIC-ENSMSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-SPIN
Laboratoire des Procédés en Milieux Granulaires (LPMG-EMSE)
Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Bonnefoy, Olivier
Gruy, Frédéric
Herri, Jean-Michel
author_facet Bonnefoy, Olivier
Gruy, Frédéric
Herri, Jean-Michel
author_sort Bonnefoy, Olivier
title Van der Waals interactions in systems involving gas hydrates.
title_short Van der Waals interactions in systems involving gas hydrates.
title_full Van der Waals interactions in systems involving gas hydrates.
title_fullStr Van der Waals interactions in systems involving gas hydrates.
title_full_unstemmed Van der Waals interactions in systems involving gas hydrates.
title_sort van der waals interactions in systems involving gas hydrates.
publisher HAL CCSD
publishDate 2005
url https://hal.science/hal-00125056
https://hal.science/hal-00125056/document
https://hal.science/hal-00125056/file/OB-FluidPhaseEq.pdf
https://doi.org/10.1016/j.fluid.2005.02.004
genre Methane hydrate
genre_facet Methane hydrate
op_source ISSN: 0378-3812
Fluid Phase Equilibria
https://hal.science/hal-00125056
Fluid Phase Equilibria, 2005, 231(2), pp.176. ⟨10.1016/j.fluid.2005.02.004⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fluid.2005.02.004
hal-00125056
https://hal.science/hal-00125056
https://hal.science/hal-00125056/document
https://hal.science/hal-00125056/file/OB-FluidPhaseEq.pdf
doi:10.1016/j.fluid.2005.02.004
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1016/j.fluid.2005.02.004
container_title Fluid Phase Equilibria
container_volume 231
container_issue 2
container_start_page 176
op_container_end_page 187
_version_ 1766068772329750528