Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska
We applied a terrestrial net primary production (NPP) model driven by satellite remote sensing observations of vegetation properties and daily surface meteorology from a regional weather forecast model to assess NPP spatial and temporal variability for the pan-Arctic basin and Alaska from 1982 to 20...
Published in: | Mitigation and Adaptation Strategies for Global Change |
---|---|
Main Authors: | , , , |
Format: | Text |
Language: | unknown |
Published: |
ScholarWorks at University of Montana
2006
|
Subjects: | |
Online Access: | https://scholarworks.umt.edu/ntsg_pubs/164 https://doi.org/10.1007/s11027-005-9014-5 |
id |
ftunivmontana:oai:scholarworks.umt.edu:ntsg_pubs-1163 |
---|---|
record_format |
openpolar |
spelling |
ftunivmontana:oai:scholarworks.umt.edu:ntsg_pubs-1163 2024-09-09T19:17:01+00:00 Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska Kimball, John S Zhao, M. McDonald, K. C. Running, Steven W 2006-07-01T07:00:00Z application/pdf https://scholarworks.umt.edu/ntsg_pubs/164 https://doi.org/10.1007/s11027-005-9014-5 unknown ScholarWorks at University of Montana https://scholarworks.umt.edu/ntsg_pubs/164 doi:10.1007/s11027-005-9014-5 © 2006 Springer Numerical Terradynamic Simulation Group Publications Arctic tundra AVHRR boreal forest Carbon Cycle climate change NPP text 2006 ftunivmontana https://doi.org/10.1007/s11027-005-9014-5 2024-06-20T05:32:53Z We applied a terrestrial net primary production (NPP) model driven by satellite remote sensing observations of vegetation properties and daily surface meteorology from a regional weather forecast model to assess NPP spatial and temporal variability for the pan-Arctic basin and Alaska from 1982 to 2000. Our results show a general decadal trend of increasing NPP for the region of approximately 2.7%, with respective higher (3.4%) and lower (2.2%) rates for North America and Eurasia. NPP is both spatially and temporally dynamic for the region, driven largely by differences in productivity rates among major biomes and temporal changes in photosynthetic canopy structure and spring and summer air temperatures. Mean annual NPP for boreal forests was approximately 3 times greater than for Arctic tundra on a unit area basis and accounted for approximately 55% of total annual carbon sequestration for the region. The timing of growing season onset inferred from regional network measurements of atmospheric CO2 drawdown in spring was inversely proportional to annual NPP calculations. Our findings indicate that recent regional warming trends in spring and summer and associated advances in the growing season are stimulating net photosynthesis and annual carbon sequestration by vegetation at high latitudes, partially mitigating anthropogenic increases in atmospheric CO2. These results also imply that regional sequestration and storage of atmospheric CO2 is being altered, with potentially greater instability and acceleration of the carbon cycle at high latitudes. Text Arctic Basin Arctic Climate change Tundra Alaska University of Montana: ScholarWorks Arctic Mitigation and Adaptation Strategies for Global Change 11 4 783 804 |
institution |
Open Polar |
collection |
University of Montana: ScholarWorks |
op_collection_id |
ftunivmontana |
language |
unknown |
topic |
Arctic tundra AVHRR boreal forest Carbon Cycle climate change NPP |
spellingShingle |
Arctic tundra AVHRR boreal forest Carbon Cycle climate change NPP Kimball, John S Zhao, M. McDonald, K. C. Running, Steven W Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska |
topic_facet |
Arctic tundra AVHRR boreal forest Carbon Cycle climate change NPP |
description |
We applied a terrestrial net primary production (NPP) model driven by satellite remote sensing observations of vegetation properties and daily surface meteorology from a regional weather forecast model to assess NPP spatial and temporal variability for the pan-Arctic basin and Alaska from 1982 to 2000. Our results show a general decadal trend of increasing NPP for the region of approximately 2.7%, with respective higher (3.4%) and lower (2.2%) rates for North America and Eurasia. NPP is both spatially and temporally dynamic for the region, driven largely by differences in productivity rates among major biomes and temporal changes in photosynthetic canopy structure and spring and summer air temperatures. Mean annual NPP for boreal forests was approximately 3 times greater than for Arctic tundra on a unit area basis and accounted for approximately 55% of total annual carbon sequestration for the region. The timing of growing season onset inferred from regional network measurements of atmospheric CO2 drawdown in spring was inversely proportional to annual NPP calculations. Our findings indicate that recent regional warming trends in spring and summer and associated advances in the growing season are stimulating net photosynthesis and annual carbon sequestration by vegetation at high latitudes, partially mitigating anthropogenic increases in atmospheric CO2. These results also imply that regional sequestration and storage of atmospheric CO2 is being altered, with potentially greater instability and acceleration of the carbon cycle at high latitudes. |
format |
Text |
author |
Kimball, John S Zhao, M. McDonald, K. C. Running, Steven W |
author_facet |
Kimball, John S Zhao, M. McDonald, K. C. Running, Steven W |
author_sort |
Kimball, John S |
title |
Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska |
title_short |
Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska |
title_full |
Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska |
title_fullStr |
Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska |
title_full_unstemmed |
Satellite Remote Sensing Of Terrestrial Net Primary Production For The Pan-arctic Basin And Alaska |
title_sort |
satellite remote sensing of terrestrial net primary production for the pan-arctic basin and alaska |
publisher |
ScholarWorks at University of Montana |
publishDate |
2006 |
url |
https://scholarworks.umt.edu/ntsg_pubs/164 https://doi.org/10.1007/s11027-005-9014-5 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic Basin Arctic Climate change Tundra Alaska |
genre_facet |
Arctic Basin Arctic Climate change Tundra Alaska |
op_source |
Numerical Terradynamic Simulation Group Publications |
op_relation |
https://scholarworks.umt.edu/ntsg_pubs/164 doi:10.1007/s11027-005-9014-5 |
op_rights |
© 2006 Springer |
op_doi |
https://doi.org/10.1007/s11027-005-9014-5 |
container_title |
Mitigation and Adaptation Strategies for Global Change |
container_volume |
11 |
container_issue |
4 |
container_start_page |
783 |
op_container_end_page |
804 |
_version_ |
1809757126351912960 |