Response of boreal peatland ecosystems to global change: A remote sensing approach

University of Minnesota M.S. thesis. August 2017. Major: Natural Resources Science and Management. Advisors: Rebecca Montgomery, Michael Falkowski. 1 computer file (PDF); ix, 97 pages. Global climate change is expected to result in anywhere from two to four degrees of warming, with consequences for...

Full description

Bibliographic Details
Main Author: McPartland, Mara
Format: Thesis
Language:English
Published: 2017
Subjects:
Online Access:http://hdl.handle.net/11299/206150
id ftunivminnesdc:oai:conservancy.umn.edu:11299/206150
record_format openpolar
spelling ftunivminnesdc:oai:conservancy.umn.edu:11299/206150 2023-05-15T15:09:40+02:00 Response of boreal peatland ecosystems to global change: A remote sensing approach McPartland, Mara 2017-08 http://hdl.handle.net/11299/206150 en eng http://hdl.handle.net/11299/206150 ecosystems global change hydrology peatlands remote sensing warming Thesis or Dissertation 2017 ftunivminnesdc 2020-02-02T15:00:27Z University of Minnesota M.S. thesis. August 2017. Major: Natural Resources Science and Management. Advisors: Rebecca Montgomery, Michael Falkowski. 1 computer file (PDF); ix, 97 pages. Global climate change is expected to result in anywhere from two to four degrees of warming, with consequences for terrestrial ecosystems. The rate of climate change is disproportionally greater at high latitudes, resulting in landscape-scale effects on the composition, structure, and function of arctic and boreal ecology. Remote sensing offers scientists the ability to track large-scale changes through the detection of biophysical processes occurring in terrestrial ecosystems. In this research, I measured the response of boreal peatland ecosystems to a suite of different climate-related drivers including increased temperature, elevated carbon dioxide levels, and hydrologic change. Working within large-scale ecosystem manipulation experiments, I used passive remote sensing to measure the response of two different types of boreal peatlands, a rich fen and an ombrotrophic bog, to simulated climate change. Chapter 1 describes my research on the use of hyperspectral remote sensing to examine changes in the composition and biodiversity of peatlands in response to long-term experimental manipulation. Chapter 2 details my findings on using simple remote sensing techniques to detect changes in peatland ecosystem productivity in response to warming, elevated carbon dioxide, and hydrologic change. Through this work, I demonstrate that remote sensing can be used to characterize the response of a range of different ecosystem properties to global change. Thesis Arctic Climate change University of Minnesota Digital Conservancy Arctic
institution Open Polar
collection University of Minnesota Digital Conservancy
op_collection_id ftunivminnesdc
language English
topic ecosystems
global change
hydrology
peatlands
remote sensing
warming
spellingShingle ecosystems
global change
hydrology
peatlands
remote sensing
warming
McPartland, Mara
Response of boreal peatland ecosystems to global change: A remote sensing approach
topic_facet ecosystems
global change
hydrology
peatlands
remote sensing
warming
description University of Minnesota M.S. thesis. August 2017. Major: Natural Resources Science and Management. Advisors: Rebecca Montgomery, Michael Falkowski. 1 computer file (PDF); ix, 97 pages. Global climate change is expected to result in anywhere from two to four degrees of warming, with consequences for terrestrial ecosystems. The rate of climate change is disproportionally greater at high latitudes, resulting in landscape-scale effects on the composition, structure, and function of arctic and boreal ecology. Remote sensing offers scientists the ability to track large-scale changes through the detection of biophysical processes occurring in terrestrial ecosystems. In this research, I measured the response of boreal peatland ecosystems to a suite of different climate-related drivers including increased temperature, elevated carbon dioxide levels, and hydrologic change. Working within large-scale ecosystem manipulation experiments, I used passive remote sensing to measure the response of two different types of boreal peatlands, a rich fen and an ombrotrophic bog, to simulated climate change. Chapter 1 describes my research on the use of hyperspectral remote sensing to examine changes in the composition and biodiversity of peatlands in response to long-term experimental manipulation. Chapter 2 details my findings on using simple remote sensing techniques to detect changes in peatland ecosystem productivity in response to warming, elevated carbon dioxide, and hydrologic change. Through this work, I demonstrate that remote sensing can be used to characterize the response of a range of different ecosystem properties to global change.
format Thesis
author McPartland, Mara
author_facet McPartland, Mara
author_sort McPartland, Mara
title Response of boreal peatland ecosystems to global change: A remote sensing approach
title_short Response of boreal peatland ecosystems to global change: A remote sensing approach
title_full Response of boreal peatland ecosystems to global change: A remote sensing approach
title_fullStr Response of boreal peatland ecosystems to global change: A remote sensing approach
title_full_unstemmed Response of boreal peatland ecosystems to global change: A remote sensing approach
title_sort response of boreal peatland ecosystems to global change: a remote sensing approach
publishDate 2017
url http://hdl.handle.net/11299/206150
geographic Arctic
geographic_facet Arctic
genre Arctic
Climate change
genre_facet Arctic
Climate change
op_relation http://hdl.handle.net/11299/206150
_version_ 1766340809472344064