Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
In certain severe mental diseases, like schizophrenia, structural alterations of the brain are detectable by magnetic resonance imaging (MRI). In this work, we try to automatically distinguish, by using anatomical features obtained from MRI images, schizophrenia patients from healthy controls. We do...
Main Authors: | , , , , |
---|---|
Other Authors: | , , , , |
Format: | Book Part |
Language: | English |
Published: |
Springer
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/2434/527468 https://doi.org/10.1007/978-3-319-68560-1_24 |
_version_ | 1821499204967596032 |
---|---|
author | DAGNEW, TEWODROS MULUGETA L. Squarcina M.W. Rivolta P. Brambilla R. Sassi |
author2 | S. Battiato G. Gallo R. Schettini F. Stanco T.M. Dagnew L. Squarcina M.W. Rivolta P. Brambilla R. Sassi |
author_facet | DAGNEW, TEWODROS MULUGETA L. Squarcina M.W. Rivolta P. Brambilla R. Sassi |
author_sort | DAGNEW, TEWODROS MULUGETA |
collection | The University of Milan: Archivio Istituzionale della Ricerca (AIR) |
container_start_page | 265 |
description | In certain severe mental diseases, like schizophrenia, structural alterations of the brain are detectable by magnetic resonance imaging (MRI). In this work, we try to automatically distinguish, by using anatomical features obtained from MRI images, schizophrenia patients from healthy controls. We do so by exploiting contextual similarity of imaging data, enhanced with a distance metric learning strategy (DML - by providing “must-be-in-the-same-class” and “must-not-be-in-the-same-class” pairs of subjects). To learn from contextual similarity of the subjects brain anatomy, we use a graph-based semi-supervised label propagation algorithm (graph transduction, GT) and compare it to standard supervised techniques (SVM and K-nearest neighbor, KNN). We performed out tests on a population of 20 schizophrenia patients and 20 healthy controls. DML+GT achieved a statistically significant advantage in classification performance (Accuracy: 0.74, Sensitivity: 0.79, Specificity: 0.69, Ck: 0.48). Enhanced contextual similarity improved performance of GT, SVM and KNN offering promising perspectives for MRI images analysis. |
format | Book Part |
genre | DML |
genre_facet | DML |
id | ftunivmilanoair:oai:air.unimi.it:2434/527468 |
institution | Open Polar |
language | English |
op_collection_id | ftunivmilanoair |
op_container_end_page | 275 |
op_doi | https://doi.org/10.1007/978-3-319-68560-1_24 |
op_relation | info:eu-repo/semantics/altIdentifier/isbn/9783319685595 info:eu-repo/semantics/altIdentifier/isbn/9783319685601 info:eu-repo/semantics/altIdentifier/wos/WOS:000445227800024 ispartofbook:Image Analysis and Processing : ICIAP 2017 ICIAP volume:10484 firstpage:265 lastpage:275 numberofpages:11 serie:LECTURE NOTES IN COMPUTER SCIENCE alleditors:S. Battiato, G. Gallo, R. Schettini, F. Stanco http://hdl.handle.net/2434/527468 doi:10.1007/978-3-319-68560-1_24 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85032485434 |
op_rights | info:eu-repo/semantics/closedAccess |
publishDate | 2017 |
publisher | Springer |
record_format | openpolar |
spelling | ftunivmilanoair:oai:air.unimi.it:2434/527468 2025-01-16T21:38:36+00:00 Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia DAGNEW, TEWODROS MULUGETA L. Squarcina M.W. Rivolta P. Brambilla R. Sassi S. Battiato G. Gallo R. Schettini F. Stanco T.M. Dagnew L. Squarcina M.W. Rivolta P. Brambilla R. Sassi 2017 http://hdl.handle.net/2434/527468 https://doi.org/10.1007/978-3-319-68560-1_24 eng eng Springer info:eu-repo/semantics/altIdentifier/isbn/9783319685595 info:eu-repo/semantics/altIdentifier/isbn/9783319685601 info:eu-repo/semantics/altIdentifier/wos/WOS:000445227800024 ispartofbook:Image Analysis and Processing : ICIAP 2017 ICIAP volume:10484 firstpage:265 lastpage:275 numberofpages:11 serie:LECTURE NOTES IN COMPUTER SCIENCE alleditors:S. Battiato, G. Gallo, R. Schettini, F. Stanco http://hdl.handle.net/2434/527468 doi:10.1007/978-3-319-68560-1_24 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85032485434 info:eu-repo/semantics/closedAccess Settore INF/01 - Informatica Settore ING-INF/06 - Bioingegneria Elettronica e Informatica Settore MED/25 - Psichiatria info:eu-repo/semantics/bookPart 2017 ftunivmilanoair https://doi.org/10.1007/978-3-319-68560-1_24 2024-03-27T16:41:33Z In certain severe mental diseases, like schizophrenia, structural alterations of the brain are detectable by magnetic resonance imaging (MRI). In this work, we try to automatically distinguish, by using anatomical features obtained from MRI images, schizophrenia patients from healthy controls. We do so by exploiting contextual similarity of imaging data, enhanced with a distance metric learning strategy (DML - by providing “must-be-in-the-same-class” and “must-not-be-in-the-same-class” pairs of subjects). To learn from contextual similarity of the subjects brain anatomy, we use a graph-based semi-supervised label propagation algorithm (graph transduction, GT) and compare it to standard supervised techniques (SVM and K-nearest neighbor, KNN). We performed out tests on a population of 20 schizophrenia patients and 20 healthy controls. DML+GT achieved a statistically significant advantage in classification performance (Accuracy: 0.74, Sensitivity: 0.79, Specificity: 0.69, Ck: 0.48). Enhanced contextual similarity improved performance of GT, SVM and KNN offering promising perspectives for MRI images analysis. Book Part DML The University of Milan: Archivio Istituzionale della Ricerca (AIR) 265 275 |
spellingShingle | Settore INF/01 - Informatica Settore ING-INF/06 - Bioingegneria Elettronica e Informatica Settore MED/25 - Psichiatria DAGNEW, TEWODROS MULUGETA L. Squarcina M.W. Rivolta P. Brambilla R. Sassi Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia |
title | Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia |
title_full | Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia |
title_fullStr | Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia |
title_full_unstemmed | Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia |
title_short | Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia |
title_sort | learning from enhanced contextual similarity in brain imaging data for classification of schizophrenia |
topic | Settore INF/01 - Informatica Settore ING-INF/06 - Bioingegneria Elettronica e Informatica Settore MED/25 - Psichiatria |
topic_facet | Settore INF/01 - Informatica Settore ING-INF/06 - Bioingegneria Elettronica e Informatica Settore MED/25 - Psichiatria |
url | http://hdl.handle.net/2434/527468 https://doi.org/10.1007/978-3-319-68560-1_24 |