Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia

In certain severe mental diseases, like schizophrenia, structural alterations of the brain are detectable by magnetic resonance imaging (MRI). In this work, we try to automatically distinguish, by using anatomical features obtained from MRI images, schizophrenia patients from healthy controls. We do...

Full description

Bibliographic Details
Main Authors: DAGNEW, TEWODROS MULUGETA, L. Squarcina, M.W. Rivolta, P. Brambilla, R. Sassi
Other Authors: S. Battiato, G. Gallo, R. Schettini, F. Stanco, T.M. Dagnew
Format: Book Part
Language:English
Published: Springer 2017
Subjects:
Online Access:http://hdl.handle.net/2434/527468
https://doi.org/10.1007/978-3-319-68560-1_24
_version_ 1821499204967596032
author DAGNEW, TEWODROS MULUGETA
L. Squarcina
M.W. Rivolta
P. Brambilla
R. Sassi
author2 S. Battiato
G. Gallo
R. Schettini
F. Stanco
T.M. Dagnew
L. Squarcina
M.W. Rivolta
P. Brambilla
R. Sassi
author_facet DAGNEW, TEWODROS MULUGETA
L. Squarcina
M.W. Rivolta
P. Brambilla
R. Sassi
author_sort DAGNEW, TEWODROS MULUGETA
collection The University of Milan: Archivio Istituzionale della Ricerca (AIR)
container_start_page 265
description In certain severe mental diseases, like schizophrenia, structural alterations of the brain are detectable by magnetic resonance imaging (MRI). In this work, we try to automatically distinguish, by using anatomical features obtained from MRI images, schizophrenia patients from healthy controls. We do so by exploiting contextual similarity of imaging data, enhanced with a distance metric learning strategy (DML - by providing “must-be-in-the-same-class” and “must-not-be-in-the-same-class” pairs of subjects). To learn from contextual similarity of the subjects brain anatomy, we use a graph-based semi-supervised label propagation algorithm (graph transduction, GT) and compare it to standard supervised techniques (SVM and K-nearest neighbor, KNN). We performed out tests on a population of 20 schizophrenia patients and 20 healthy controls. DML+GT achieved a statistically significant advantage in classification performance (Accuracy: 0.74, Sensitivity: 0.79, Specificity: 0.69, Ck: 0.48). Enhanced contextual similarity improved performance of GT, SVM and KNN offering promising perspectives for MRI images analysis.
format Book Part
genre DML
genre_facet DML
id ftunivmilanoair:oai:air.unimi.it:2434/527468
institution Open Polar
language English
op_collection_id ftunivmilanoair
op_container_end_page 275
op_doi https://doi.org/10.1007/978-3-319-68560-1_24
op_relation info:eu-repo/semantics/altIdentifier/isbn/9783319685595
info:eu-repo/semantics/altIdentifier/isbn/9783319685601
info:eu-repo/semantics/altIdentifier/wos/WOS:000445227800024
ispartofbook:Image Analysis and Processing : ICIAP 2017
ICIAP
volume:10484
firstpage:265
lastpage:275
numberofpages:11
serie:LECTURE NOTES IN COMPUTER SCIENCE
alleditors:S. Battiato, G. Gallo, R. Schettini, F. Stanco
http://hdl.handle.net/2434/527468
doi:10.1007/978-3-319-68560-1_24
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85032485434
op_rights info:eu-repo/semantics/closedAccess
publishDate 2017
publisher Springer
record_format openpolar
spelling ftunivmilanoair:oai:air.unimi.it:2434/527468 2025-01-16T21:38:36+00:00 Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia DAGNEW, TEWODROS MULUGETA L. Squarcina M.W. Rivolta P. Brambilla R. Sassi S. Battiato G. Gallo R. Schettini F. Stanco T.M. Dagnew L. Squarcina M.W. Rivolta P. Brambilla R. Sassi 2017 http://hdl.handle.net/2434/527468 https://doi.org/10.1007/978-3-319-68560-1_24 eng eng Springer info:eu-repo/semantics/altIdentifier/isbn/9783319685595 info:eu-repo/semantics/altIdentifier/isbn/9783319685601 info:eu-repo/semantics/altIdentifier/wos/WOS:000445227800024 ispartofbook:Image Analysis and Processing : ICIAP 2017 ICIAP volume:10484 firstpage:265 lastpage:275 numberofpages:11 serie:LECTURE NOTES IN COMPUTER SCIENCE alleditors:S. Battiato, G. Gallo, R. Schettini, F. Stanco http://hdl.handle.net/2434/527468 doi:10.1007/978-3-319-68560-1_24 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85032485434 info:eu-repo/semantics/closedAccess Settore INF/01 - Informatica Settore ING-INF/06 - Bioingegneria Elettronica e Informatica Settore MED/25 - Psichiatria info:eu-repo/semantics/bookPart 2017 ftunivmilanoair https://doi.org/10.1007/978-3-319-68560-1_24 2024-03-27T16:41:33Z In certain severe mental diseases, like schizophrenia, structural alterations of the brain are detectable by magnetic resonance imaging (MRI). In this work, we try to automatically distinguish, by using anatomical features obtained from MRI images, schizophrenia patients from healthy controls. We do so by exploiting contextual similarity of imaging data, enhanced with a distance metric learning strategy (DML - by providing “must-be-in-the-same-class” and “must-not-be-in-the-same-class” pairs of subjects). To learn from contextual similarity of the subjects brain anatomy, we use a graph-based semi-supervised label propagation algorithm (graph transduction, GT) and compare it to standard supervised techniques (SVM and K-nearest neighbor, KNN). We performed out tests on a population of 20 schizophrenia patients and 20 healthy controls. DML+GT achieved a statistically significant advantage in classification performance (Accuracy: 0.74, Sensitivity: 0.79, Specificity: 0.69, Ck: 0.48). Enhanced contextual similarity improved performance of GT, SVM and KNN offering promising perspectives for MRI images analysis. Book Part DML The University of Milan: Archivio Istituzionale della Ricerca (AIR) 265 275
spellingShingle Settore INF/01 - Informatica
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore MED/25 - Psichiatria
DAGNEW, TEWODROS MULUGETA
L. Squarcina
M.W. Rivolta
P. Brambilla
R. Sassi
Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
title Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
title_full Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
title_fullStr Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
title_full_unstemmed Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
title_short Learning from Enhanced Contextual Similarity in Brain Imaging Data for Classification of Schizophrenia
title_sort learning from enhanced contextual similarity in brain imaging data for classification of schizophrenia
topic Settore INF/01 - Informatica
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore MED/25 - Psichiatria
topic_facet Settore INF/01 - Informatica
Settore ING-INF/06 - Bioingegneria Elettronica e Informatica
Settore MED/25 - Psichiatria
url http://hdl.handle.net/2434/527468
https://doi.org/10.1007/978-3-319-68560-1_24