Experimental diagenesis : insights into aragonite to calcite transformation of Arctica islandica shells by hydrothermal treatment

Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralis...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: L. A. Casella, E. Griesshaber, X. Yin, A. Ziegler, V. Mavromatis, D. Müller, A. C. Ritter, D. Hippler, E. M. Harper, M. Dietzel, A. Immenhauser, B. R. Schöne, W. Schmahl, L. Angiolini
Other Authors: L.A. Casella, V. Mavromati, A.C. Ritter, E.M. Harper, B.R. Schöne
Format: Article in Journal/Newspaper
Language:English
Published: European Geosciences Union 2017
Subjects:
Online Access:http://hdl.handle.net/2434/513684
https://doi.org/10.5194/bg-14-1461-2017
Description
Summary:Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175°C, with the main focus on 100 and 175°C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100°C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175°C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100°C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174°C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175°C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact ...