Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
In this paper, we propose a lossless compression method to resolve the limitations in the real-time transmission of aurora spectral images. This method bi-dimensionally decorrelates the spatial and spectral domains and effectively removes side information of recursively computed coefficients to achi...
Published in: | Information Sciences |
---|---|
Main Authors: | , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/2434/470640 https://doi.org/10.1016/j.ins.2016.11.008 |
id |
ftunivmilanoair:oai:air.unimi.it:2434/470640 |
---|---|
record_format |
openpolar |
spelling |
ftunivmilanoair:oai:air.unimi.it:2434/470640 2024-04-21T07:47:45+00:00 Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method W. Kong J. Wu Z. Hu G. Jeon M. Anisetti E. Damiani W. Kong J. Wu Z. Hu M. Anisetti E. Damiani G. Jeon 2017 http://hdl.handle.net/2434/470640 https://doi.org/10.1016/j.ins.2016.11.008 eng eng Elsevier info:eu-repo/semantics/altIdentifier/wos/WOS:000392786000003 volume:381 firstpage:33 lastpage:45 numberofpages:13 journal:INFORMATION SCIENCES http://hdl.handle.net/2434/470640 doi:10.1016/j.ins.2016.11.008 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84998636478 info:eu-repo/semantics/closedAccess Aurora spectral image Bi-dimensional decorrelation Lossless compression Online Parallel Control and Systems Engineering Theoretical Computer Science Software Computer Science Application Computer Vision and Pattern Recognition Information Systems and Management Artificial Intelligence Settore INF/01 - Informatica info:eu-repo/semantics/article 2017 ftunivmilanoair https://doi.org/10.1016/j.ins.2016.11.008 2024-03-27T16:47:02Z In this paper, we propose a lossless compression method to resolve the limitations in the real-time transmission of aurora spectral images. This method bi-dimensionally decorrelates the spatial and spectral domains and effectively removes side information of recursively computed coefficients to achieve high quality rapid compression. Experiments on data sets captured from the Antarctic Zhongshan Station show that the proposed algorithm can meet real-time requirements by using parallel processing to achieve outstanding compression ratio performance with low computational complexity. Article in Journal/Newspaper Antarc* Antarctic The University of Milan: Archivio Istituzionale della Ricerca (AIR) Information Sciences 381 33 45 |
institution |
Open Polar |
collection |
The University of Milan: Archivio Istituzionale della Ricerca (AIR) |
op_collection_id |
ftunivmilanoair |
language |
English |
topic |
Aurora spectral image Bi-dimensional decorrelation Lossless compression Online Parallel Control and Systems Engineering Theoretical Computer Science Software Computer Science Application Computer Vision and Pattern Recognition Information Systems and Management Artificial Intelligence Settore INF/01 - Informatica |
spellingShingle |
Aurora spectral image Bi-dimensional decorrelation Lossless compression Online Parallel Control and Systems Engineering Theoretical Computer Science Software Computer Science Application Computer Vision and Pattern Recognition Information Systems and Management Artificial Intelligence Settore INF/01 - Informatica W. Kong J. Wu Z. Hu G. Jeon M. Anisetti E. Damiani Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
topic_facet |
Aurora spectral image Bi-dimensional decorrelation Lossless compression Online Parallel Control and Systems Engineering Theoretical Computer Science Software Computer Science Application Computer Vision and Pattern Recognition Information Systems and Management Artificial Intelligence Settore INF/01 - Informatica |
description |
In this paper, we propose a lossless compression method to resolve the limitations in the real-time transmission of aurora spectral images. This method bi-dimensionally decorrelates the spatial and spectral domains and effectively removes side information of recursively computed coefficients to achieve high quality rapid compression. Experiments on data sets captured from the Antarctic Zhongshan Station show that the proposed algorithm can meet real-time requirements by using parallel processing to achieve outstanding compression ratio performance with low computational complexity. |
author2 |
W. Kong J. Wu Z. Hu M. Anisetti E. Damiani G. Jeon |
format |
Article in Journal/Newspaper |
author |
W. Kong J. Wu Z. Hu G. Jeon M. Anisetti E. Damiani |
author_facet |
W. Kong J. Wu Z. Hu G. Jeon M. Anisetti E. Damiani |
author_sort |
W. Kong |
title |
Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
title_short |
Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
title_full |
Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
title_fullStr |
Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
title_full_unstemmed |
Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
title_sort |
lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method |
publisher |
Elsevier |
publishDate |
2017 |
url |
http://hdl.handle.net/2434/470640 https://doi.org/10.1016/j.ins.2016.11.008 |
genre |
Antarc* Antarctic |
genre_facet |
Antarc* Antarctic |
op_relation |
info:eu-repo/semantics/altIdentifier/wos/WOS:000392786000003 volume:381 firstpage:33 lastpage:45 numberofpages:13 journal:INFORMATION SCIENCES http://hdl.handle.net/2434/470640 doi:10.1016/j.ins.2016.11.008 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84998636478 |
op_rights |
info:eu-repo/semantics/closedAccess |
op_doi |
https://doi.org/10.1016/j.ins.2016.11.008 |
container_title |
Information Sciences |
container_volume |
381 |
container_start_page |
33 |
op_container_end_page |
45 |
_version_ |
1796947057750048768 |