Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method

In this paper, we propose a lossless compression method to resolve the limitations in the real-time transmission of aurora spectral images. This method bi-dimensionally decorrelates the spatial and spectral domains and effectively removes side information of recursively computed coefficients to achi...

Full description

Bibliographic Details
Published in:Information Sciences
Main Authors: W. Kong, J. Wu, Z. Hu, G. Jeon, M. Anisetti, E. Damiani
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2017
Subjects:
Online Access:http://hdl.handle.net/2434/470640
https://doi.org/10.1016/j.ins.2016.11.008
id ftunivmilanoair:oai:air.unimi.it:2434/470640
record_format openpolar
spelling ftunivmilanoair:oai:air.unimi.it:2434/470640 2024-04-21T07:47:45+00:00 Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method W. Kong J. Wu Z. Hu G. Jeon M. Anisetti E. Damiani W. Kong J. Wu Z. Hu M. Anisetti E. Damiani G. Jeon 2017 http://hdl.handle.net/2434/470640 https://doi.org/10.1016/j.ins.2016.11.008 eng eng Elsevier info:eu-repo/semantics/altIdentifier/wos/WOS:000392786000003 volume:381 firstpage:33 lastpage:45 numberofpages:13 journal:INFORMATION SCIENCES http://hdl.handle.net/2434/470640 doi:10.1016/j.ins.2016.11.008 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84998636478 info:eu-repo/semantics/closedAccess Aurora spectral image Bi-dimensional decorrelation Lossless compression Online Parallel Control and Systems Engineering Theoretical Computer Science Software Computer Science Application Computer Vision and Pattern Recognition Information Systems and Management Artificial Intelligence Settore INF/01 - Informatica info:eu-repo/semantics/article 2017 ftunivmilanoair https://doi.org/10.1016/j.ins.2016.11.008 2024-03-27T16:47:02Z In this paper, we propose a lossless compression method to resolve the limitations in the real-time transmission of aurora spectral images. This method bi-dimensionally decorrelates the spatial and spectral domains and effectively removes side information of recursively computed coefficients to achieve high quality rapid compression. Experiments on data sets captured from the Antarctic Zhongshan Station show that the proposed algorithm can meet real-time requirements by using parallel processing to achieve outstanding compression ratio performance with low computational complexity. Article in Journal/Newspaper Antarc* Antarctic The University of Milan: Archivio Istituzionale della Ricerca (AIR) Information Sciences 381 33 45
institution Open Polar
collection The University of Milan: Archivio Istituzionale della Ricerca (AIR)
op_collection_id ftunivmilanoair
language English
topic Aurora spectral image
Bi-dimensional decorrelation
Lossless compression
Online
Parallel
Control and Systems Engineering
Theoretical Computer Science
Software
Computer Science Application
Computer Vision and Pattern Recognition
Information Systems and Management
Artificial Intelligence
Settore INF/01 - Informatica
spellingShingle Aurora spectral image
Bi-dimensional decorrelation
Lossless compression
Online
Parallel
Control and Systems Engineering
Theoretical Computer Science
Software
Computer Science Application
Computer Vision and Pattern Recognition
Information Systems and Management
Artificial Intelligence
Settore INF/01 - Informatica
W. Kong
J. Wu
Z. Hu
G. Jeon
M. Anisetti
E. Damiani
Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
topic_facet Aurora spectral image
Bi-dimensional decorrelation
Lossless compression
Online
Parallel
Control and Systems Engineering
Theoretical Computer Science
Software
Computer Science Application
Computer Vision and Pattern Recognition
Information Systems and Management
Artificial Intelligence
Settore INF/01 - Informatica
description In this paper, we propose a lossless compression method to resolve the limitations in the real-time transmission of aurora spectral images. This method bi-dimensionally decorrelates the spatial and spectral domains and effectively removes side information of recursively computed coefficients to achieve high quality rapid compression. Experiments on data sets captured from the Antarctic Zhongshan Station show that the proposed algorithm can meet real-time requirements by using parallel processing to achieve outstanding compression ratio performance with low computational complexity.
author2 W. Kong
J. Wu
Z. Hu
M. Anisetti
E. Damiani
G. Jeon
format Article in Journal/Newspaper
author W. Kong
J. Wu
Z. Hu
G. Jeon
M. Anisetti
E. Damiani
author_facet W. Kong
J. Wu
Z. Hu
G. Jeon
M. Anisetti
E. Damiani
author_sort W. Kong
title Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
title_short Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
title_full Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
title_fullStr Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
title_full_unstemmed Lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
title_sort lossless compression for aurora spectral images using fast online bi-dimensional decorrelation method
publisher Elsevier
publishDate 2017
url http://hdl.handle.net/2434/470640
https://doi.org/10.1016/j.ins.2016.11.008
genre Antarc*
Antarctic
genre_facet Antarc*
Antarctic
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000392786000003
volume:381
firstpage:33
lastpage:45
numberofpages:13
journal:INFORMATION SCIENCES
http://hdl.handle.net/2434/470640
doi:10.1016/j.ins.2016.11.008
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-84998636478
op_rights info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.1016/j.ins.2016.11.008
container_title Information Sciences
container_volume 381
container_start_page 33
op_container_end_page 45
_version_ 1796947057750048768