A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011
Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen o...
Main Authors: | , , , |
---|---|
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Springer Verlag
2022
|
Subjects: | |
Online Access: | https://mural.maynoothuniversity.ie/15560/ https://mural.maynoothuniversity.ie/15560/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf |
id |
ftunivmaynooth:oai:mural.maynoothuniversity.ie:15560 |
---|---|
record_format |
openpolar |
spelling |
ftunivmaynooth:oai:mural.maynoothuniversity.ie:15560 2023-05-15T17:27:25+02:00 A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 Hallam, Samatha Josey, Simon A. Mc Carthy, Gerard Hirschi, Joël J.-M. 2022 text https://mural.maynoothuniversity.ie/15560/ https://mural.maynoothuniversity.ie/15560/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf en eng Springer Verlag https://mural.maynoothuniversity.ie/15560/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf Hallam, Samatha and Josey, Simon A. and Mc Carthy, Gerard and Hirschi, Joël J.-M. (2022) A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics. ISSN 1432-0894 Article NonPeerReviewed 2022 ftunivmaynooth 2022-06-13T18:49:07Z Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strong- est. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and sum- mer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms −1 ), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscil- lation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term. Article in Journal/Newspaper North Atlantic Maynooth University ePrints and eTheses Archive (National University of Ireland) Pacific |
institution |
Open Polar |
collection |
Maynooth University ePrints and eTheses Archive (National University of Ireland) |
op_collection_id |
ftunivmaynooth |
language |
English |
description |
Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strong- est. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and sum- mer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms −1 ), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscil- lation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term. |
format |
Article in Journal/Newspaper |
author |
Hallam, Samatha Josey, Simon A. Mc Carthy, Gerard Hirschi, Joël J.-M. |
spellingShingle |
Hallam, Samatha Josey, Simon A. Mc Carthy, Gerard Hirschi, Joël J.-M. A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 |
author_facet |
Hallam, Samatha Josey, Simon A. Mc Carthy, Gerard Hirschi, Joël J.-M. |
author_sort |
Hallam, Samatha |
title |
A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 |
title_short |
A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 |
title_full |
A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 |
title_fullStr |
A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 |
title_full_unstemmed |
A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011 |
title_sort |
regional (land–ocean) comparison of the seasonal to decadal variability of the northern hemisphere jet stream 1871–2011 |
publisher |
Springer Verlag |
publishDate |
2022 |
url |
https://mural.maynoothuniversity.ie/15560/ https://mural.maynoothuniversity.ie/15560/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf |
geographic |
Pacific |
geographic_facet |
Pacific |
genre |
North Atlantic |
genre_facet |
North Atlantic |
op_relation |
https://mural.maynoothuniversity.ie/15560/1/Hallam2022_Article_ARegionalLandOceanComparisonOf.pdf Hallam, Samatha and Josey, Simon A. and Mc Carthy, Gerard and Hirschi, Joël J.-M. (2022) A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011. Climate Dynamics. ISSN 1432-0894 |
_version_ |
1766119492754079744 |