id ftunivmaynooth:oai:mural.maynoothuniversity.ie:13310
record_format openpolar
institution Open Polar
collection Maynooth University ePrints and eTheses Archive (National University of Ireland)
op_collection_id ftunivmaynooth
language English
description We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (> 1014 M) at redshift z > 1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect ∼ 500 clusters at redshift z > 1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4 × 1014M, for a 120 cm aperture telescope, and 1014M for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky from Atacama would be shallower than CORE and detect about 11,000 clusters, while a survey from the South Pole with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with such a South Pole survey, CORE would reach a limiting mass of M500 ∼ 2 − 3 × 1013Mand detect 220,000 clusters (5 sigma detection limit). Cosmological ...
format Article in Journal/Newspaper
author Melin, J.-B.
Bonaldi, A.
Remazeilles, M.
Hagstotz, S.
Diego, J.M.
Hernandez-Monteagudo, C.
Genova-Santos, R.T.
Luzzi, G.
Martins, C.J.A.P.
Grandis, S.
Mohr, J.J.
Bartlett, J.G.
Delabrouille, J.
Ferraro, S.
Tramonte, D.
Rubino-Martin, J.A.
Macias-Perez, J.F.
Achúcarro, A.
Ade, P.A.R.
Allison, R.
Ashdown, M.
Ballardini, M.
Banday, A.J.
Banerji, R.
Bartolo, N.
Basak, S.
Baselmans, J.
Basu, K.
Battye, R.A.
Baumann, D.
Bersanelli, M.
Bonato, M.
Borrill, J.
Bouchet, F.R.
Boulanger, F.
Brinckmann, T.
Bucher, M.
Burigana, C.
Buzzelli, A.
Cai, Z.Y.
Calvo, M.
Carvalho, C.S.
Castellano, M.G.
Challinor, A.
Chluba, J.
Clesse, S.
Colafrancesco, S.
Colantoni, I.
Coppolecchia, A.
Crook, M.
spellingShingle Melin, J.-B.
Bonaldi, A.
Remazeilles, M.
Hagstotz, S.
Diego, J.M.
Hernandez-Monteagudo, C.
Genova-Santos, R.T.
Luzzi, G.
Martins, C.J.A.P.
Grandis, S.
Mohr, J.J.
Bartlett, J.G.
Delabrouille, J.
Ferraro, S.
Tramonte, D.
Rubino-Martin, J.A.
Macias-Perez, J.F.
Achúcarro, A.
Ade, P.A.R.
Allison, R.
Ashdown, M.
Ballardini, M.
Banday, A.J.
Banerji, R.
Bartolo, N.
Basak, S.
Baselmans, J.
Basu, K.
Battye, R.A.
Baumann, D.
Bersanelli, M.
Bonato, M.
Borrill, J.
Bouchet, F.R.
Boulanger, F.
Brinckmann, T.
Bucher, M.
Burigana, C.
Buzzelli, A.
Cai, Z.Y.
Calvo, M.
Carvalho, C.S.
Castellano, M.G.
Challinor, A.
Chluba, J.
Clesse, S.
Colafrancesco, S.
Colantoni, I.
Coppolecchia, A.
Crook, M.
Exploring Cosmic Origins with CORE: Cluster Science
author_facet Melin, J.-B.
Bonaldi, A.
Remazeilles, M.
Hagstotz, S.
Diego, J.M.
Hernandez-Monteagudo, C.
Genova-Santos, R.T.
Luzzi, G.
Martins, C.J.A.P.
Grandis, S.
Mohr, J.J.
Bartlett, J.G.
Delabrouille, J.
Ferraro, S.
Tramonte, D.
Rubino-Martin, J.A.
Macias-Perez, J.F.
Achúcarro, A.
Ade, P.A.R.
Allison, R.
Ashdown, M.
Ballardini, M.
Banday, A.J.
Banerji, R.
Bartolo, N.
Basak, S.
Baselmans, J.
Basu, K.
Battye, R.A.
Baumann, D.
Bersanelli, M.
Bonato, M.
Borrill, J.
Bouchet, F.R.
Boulanger, F.
Brinckmann, T.
Bucher, M.
Burigana, C.
Buzzelli, A.
Cai, Z.Y.
Calvo, M.
Carvalho, C.S.
Castellano, M.G.
Challinor, A.
Chluba, J.
Clesse, S.
Colafrancesco, S.
Colantoni, I.
Coppolecchia, A.
Crook, M.
author_sort Melin, J.-B.
title Exploring Cosmic Origins with CORE: Cluster Science
title_short Exploring Cosmic Origins with CORE: Cluster Science
title_full Exploring Cosmic Origins with CORE: Cluster Science
title_fullStr Exploring Cosmic Origins with CORE: Cluster Science
title_full_unstemmed Exploring Cosmic Origins with CORE: Cluster Science
title_sort exploring cosmic origins with core: cluster science
publisher IOP Publishing
publishDate 2018
url https://mural.maynoothuniversity.ie/13310/
https://mural.maynoothuniversity.ie/13310/1/NT_experimental%20physics_exploring.pdf
geographic South Pole
geographic_facet South Pole
genre South pole
genre_facet South pole
op_relation https://mural.maynoothuniversity.ie/13310/1/NT_experimental%20physics_exploring.pdf
Melin, J.-B. and Bonaldi, A. and Remazeilles, M. and Hagstotz, S. and Diego, J.M. and Hernandez-Monteagudo, C. and Genova-Santos, R.T. and Luzzi, G. and Martins, C.J.A.P. and Grandis, S. and Mohr, J.J. and Bartlett, J.G. and Delabrouille, J. and Ferraro, S. and Tramonte, D. and Rubino-Martin, J.A. and Macias-Perez, J.F. and Achúcarro, A. and Ade, P.A.R. and Allison, R. and Ashdown, M. and Ballardini, M. and Banday, A.J. and Banerji, R. and Bartolo, N. and Basak, S. and Baselmans, J. and Basu, K. and Battye, R.A. and Baumann, D. and Bersanelli, M. and Bonato, M. and Borrill, J. and Bouchet, F.R. and Boulanger, F. and Brinckmann, T. and Bucher, M. and Burigana, C. and Buzzelli, A. and Cai, Z.Y. and Calvo, M. and Carvalho, C.S. and Castellano, M.G. and Challinor, A. and Chluba, J. and Clesse, S. and Colafrancesco, S. and Colantoni, I. and Coppolecchia, A. and Crook, M. and D'Alessandro, Giuseppe and De Bernardis, P. and de Gasperis, G. and De Petris, M. and de Zotti, G. and Di Valentino, E. and Errard, J. and Forastieri, F. and Galli, S. and Gerbino, M. and Gonzalez-Nuevo, J. and Greenslade, J. and Hanany, S. and Handley, W. and Hervias-Caimapo, C. and Hills, M. and Hivon, E. and Kiiveri, K. and Kisner, T.S. and Kitching, T. and Kunz, M. and Kurki-Suonio, H. and Lamagna, L. and Lasenby, A. and Lattanzi, M. and Le Brun, A.M.C. and Lesgourgues, J. and Lewis, A. and Liguori, M. and Lindholm, V. and Lopez-Caniego, M. and Maffei, B. and Martinez-Gonzalez, E. and Masi, S. and McCarthy, D. and Melchiorri, A. and Molinari, D. and Monfardini, A. and Natoli, P. and Negrello, M. and Notari, A. and Paiella, A. and Paoletti, D. and Patanchon, G. and Piat, M. and Pisano, G. and Polastri, L. and Polenta, G. and Pollo, A. and Poulin, V. and Quartin, M. and Roman, M. and Salvati, L. and Tartari, A. and Tomasi, M. and Trappe, Neil and Triqueneaux, S. and Trombetti, T. and Tucker, C. and Valiviita, J. and van de Weygaert, R. and Van Tent, B. and Vennin, V. and Vielva, P. and Vittorio, N. and Weller, J. and Young, K. and Zannoni, M. (2018) Exploring Cosmic Origins with CORE: Cluster Science. Journal of Cosmology and Astroparticle Physics, 4 (019). ISSN 1475-7516
_version_ 1766201718172811264
spelling ftunivmaynooth:oai:mural.maynoothuniversity.ie:13310 2023-05-15T18:22:19+02:00 Exploring Cosmic Origins with CORE: Cluster Science Melin, J.-B. Bonaldi, A. Remazeilles, M. Hagstotz, S. Diego, J.M. Hernandez-Monteagudo, C. Genova-Santos, R.T. Luzzi, G. Martins, C.J.A.P. Grandis, S. Mohr, J.J. Bartlett, J.G. Delabrouille, J. Ferraro, S. Tramonte, D. Rubino-Martin, J.A. Macias-Perez, J.F. Achúcarro, A. Ade, P.A.R. Allison, R. Ashdown, M. Ballardini, M. Banday, A.J. Banerji, R. Bartolo, N. Basak, S. Baselmans, J. Basu, K. Battye, R.A. Baumann, D. Bersanelli, M. Bonato, M. Borrill, J. Bouchet, F.R. Boulanger, F. Brinckmann, T. Bucher, M. Burigana, C. Buzzelli, A. Cai, Z.Y. Calvo, M. Carvalho, C.S. Castellano, M.G. Challinor, A. Chluba, J. Clesse, S. Colafrancesco, S. Colantoni, I. Coppolecchia, A. Crook, M. 2018 text https://mural.maynoothuniversity.ie/13310/ https://mural.maynoothuniversity.ie/13310/1/NT_experimental%20physics_exploring.pdf en eng IOP Publishing https://mural.maynoothuniversity.ie/13310/1/NT_experimental%20physics_exploring.pdf Melin, J.-B. and Bonaldi, A. and Remazeilles, M. and Hagstotz, S. and Diego, J.M. and Hernandez-Monteagudo, C. and Genova-Santos, R.T. and Luzzi, G. and Martins, C.J.A.P. and Grandis, S. and Mohr, J.J. and Bartlett, J.G. and Delabrouille, J. and Ferraro, S. and Tramonte, D. and Rubino-Martin, J.A. and Macias-Perez, J.F. and Achúcarro, A. and Ade, P.A.R. and Allison, R. and Ashdown, M. and Ballardini, M. and Banday, A.J. and Banerji, R. and Bartolo, N. and Basak, S. and Baselmans, J. and Basu, K. and Battye, R.A. and Baumann, D. and Bersanelli, M. and Bonato, M. and Borrill, J. and Bouchet, F.R. and Boulanger, F. and Brinckmann, T. and Bucher, M. and Burigana, C. and Buzzelli, A. and Cai, Z.Y. and Calvo, M. and Carvalho, C.S. and Castellano, M.G. and Challinor, A. and Chluba, J. and Clesse, S. and Colafrancesco, S. and Colantoni, I. and Coppolecchia, A. and Crook, M. and D'Alessandro, Giuseppe and De Bernardis, P. and de Gasperis, G. and De Petris, M. and de Zotti, G. and Di Valentino, E. and Errard, J. and Forastieri, F. and Galli, S. and Gerbino, M. and Gonzalez-Nuevo, J. and Greenslade, J. and Hanany, S. and Handley, W. and Hervias-Caimapo, C. and Hills, M. and Hivon, E. and Kiiveri, K. and Kisner, T.S. and Kitching, T. and Kunz, M. and Kurki-Suonio, H. and Lamagna, L. and Lasenby, A. and Lattanzi, M. and Le Brun, A.M.C. and Lesgourgues, J. and Lewis, A. and Liguori, M. and Lindholm, V. and Lopez-Caniego, M. and Maffei, B. and Martinez-Gonzalez, E. and Masi, S. and McCarthy, D. and Melchiorri, A. and Molinari, D. and Monfardini, A. and Natoli, P. and Negrello, M. and Notari, A. and Paiella, A. and Paoletti, D. and Patanchon, G. and Piat, M. and Pisano, G. and Polastri, L. and Polenta, G. and Pollo, A. and Poulin, V. and Quartin, M. and Roman, M. and Salvati, L. and Tartari, A. and Tomasi, M. and Trappe, Neil and Triqueneaux, S. and Trombetti, T. and Tucker, C. and Valiviita, J. and van de Weygaert, R. and Van Tent, B. and Vennin, V. and Vielva, P. and Vittorio, N. and Weller, J. and Young, K. and Zannoni, M. (2018) Exploring Cosmic Origins with CORE: Cluster Science. Journal of Cosmology and Astroparticle Physics, 4 (019). ISSN 1475-7516 Article PeerReviewed 2018 ftunivmaynooth 2022-06-13T18:47:48Z We examine the cosmological constraints that can be achieved with a galaxy cluster survey with the future CORE space mission. Using realistic simulations of the millimeter sky, produced with the latest version of the Planck Sky Model, we characterize the CORE cluster catalogues as a function of the main mission performance parameters. We pay particular attention to telescope size, key to improved angular resolution, and discuss the comparison and the complementarity of CORE with ambitious future ground-based CMB experiments that could be deployed in the next decade. A possible CORE mission concept with a 150 cm diameter primary mirror can detect of the order of 50,000 clusters through the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases (decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm. The 150 cm telescope configuration will detect the most massive clusters (> 1014 M) at redshift z > 1.5 over the whole sky, although the exact number above this redshift is tied to the uncertain evolution of the cluster SZE flux-mass relation; assuming self-similar evolution, CORE will detect ∼ 500 clusters at redshift z > 1.5. This changes to 800 (200) when increasing (decreasing) the mirror size by 30 cm. CORE will be able to measure individual cluster halo masses through lensing of the cosmic microwave background anisotropies with a 1-σ sensitivity of 4 × 1014M, for a 120 cm aperture telescope, and 1014M for a 180 cm one. From the ground, we estimate that, for example, a survey with about 150,000 detectors at the focus of 350 cm telescopes observing 65% of the sky from Atacama would be shallower than CORE and detect about 11,000 clusters, while a survey from the South Pole with the same number of detectors observing 25% of sky with a 10 m telescope is expected to be deeper and to detect about 70,000 clusters. When combined with such a South Pole survey, CORE would reach a limiting mass of M500 ∼ 2 − 3 × 1013Mand detect 220,000 clusters (5 sigma detection limit). Cosmological ... Article in Journal/Newspaper South pole Maynooth University ePrints and eTheses Archive (National University of Ireland) South Pole