Identification, life history, and ecology of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay

Epibiotic relationships are a widespread phenomenon in marine, estuarine and freshwater environments, and include diverse epibiont organisms such as bacteria, protists, rotifers, and barnacles. Despite its wide occurrence, epibiosis is still poorly known regarding its consequences, advantages, and d...

Full description

Bibliographic Details
Main Author: Utz, Laura Roberta Pinto
Other Authors: Small, Eugene B., Marine-Estuarine-Environmental Sciences
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2004
Subjects:
Online Access:http://hdl.handle.net/1903/192
Description
Summary:Epibiotic relationships are a widespread phenomenon in marine, estuarine and freshwater environments, and include diverse epibiont organisms such as bacteria, protists, rotifers, and barnacles. Despite its wide occurrence, epibiosis is still poorly known regarding its consequences, advantages, and disadvantages for host and epibiont. Most studies performed about epibiotic communities have focused on the epibionts' effects on host fitness, with few studies emphasizing on the epibiont itself. The present work investigates species composition, spatial and temporal fluctuations, and aspects of the life cycle and attachment preferences of Peritrich epibionts on calanoid copepods in Chesapeake Bay, USA. Two species of Peritrich ciliates (Zoothamnium intermedium Precht, 1935, and Epistylis sp.) were identified to live as epibionts on the two most abundant copepod species (Acartia tonsa and Eurytemora affinis) during spring and summer months in Chesapeake Bay. Infestation prevalence was not significantly correlated with environmental variables or phytoplankton abundance, but displayed a trend following host abundance. Investigation of the life cycle of Z. intermedium suggested that it is an obligate epibiont, being unable to attach to non-living substrates in the laboratory or in the field. Formation of free-swimming stages (telotrochs) occurs as a result of binary fission, as observed for other peritrichs, and is also triggered by death or molt of the crustacean host. Attachment success of dispersal stages decreased as telotroch age increased, suggesting that colonization rates in nature may be strongly dependent on intense production of telotrochs by the epibiont ciliates. Laboratory experiments demonstrated that Z. intermedium colonizes equally adult and copepodite stages of A. tonsa and E. affinis. The epibiont is also able to colonize barnacle nauplii and a harpacticoid copepod, when these were the only living host available, but fails to colonize non-crustacean hosts, such as the rotifer Brachionus calyciflorus or ...