Acid-base regulation in the Dungeness crab (Metacarcinus magister): effects of predicted future changes in environmental pCO2

Rising seawater pCO2 (ocean acidification) presents a challenge for marine organisms. To counteract disturbances, many aquatic crustaceans excrete/accumulate acid-base equivalents through their gills; however, not much is known about the role of ammonia in this response. The present study investigat...

Full description

Bibliographic Details
Main Authors: Hans, Stephanie, Fehsenfeld, Sandra, Weihrauch, Dirk
Format: Article in Journal/Newspaper
Language:English
Published: Marine Biology 2013
Subjects:
Online Access:http://hdl.handle.net/1993/32673
Description
Summary:Rising seawater pCO2 (ocean acidification) presents a challenge for marine organisms. To counteract disturbances, many aquatic crustaceans excrete/accumulate acid-base equivalents through their gills; however, not much is known about the role of ammonia in this response. The present study investigated the effects of elevated pCO2 on acid-base and ammonia regulation in the Dungeness crab, Metacarcinus magister on the whole animal and the isolated gill level. Hemolymph pCO2 and [HCO3-] increased in M. magister acclimated to elevated pCO2 while pH remained stable. Additionally, hemolymph [Na+], [Ca2+], and [SO42-] were significantly increased. When challenged with varying pH during gill perfusion, the pH of the artificial hemolymph remained relatively unchanged. Overall, ammonia production and excretion were reduced in crabs acclimated to elevated pCO2, demonstrating that either amino acid metabolism is reduced in response to this particular stress, or nitrogenous wastes are excreted in an alternative form.