Radar cross section data inversion for snow-covered sea ice remote sensing

This thesis reports on my Ph.D. research in the area of microwave remote sensing of the Arctic. The main objective of this research is to reconstruct the dielectric profile of the snow-covered sea ice, and indirectly retrieve some of its geophysical and thermodynamic properties. To meet this objecti...

Full description

Bibliographic Details
Main Author: Firoozy, Nariman
Other Authors: Mojabi, Puyan (Electrical and Computer Engineering) Barber, David G. (Environment and Geography), LoVetri, Joe (Electrical and Computer Engineering) Papakyriakou, Tim (Environment and Geography) Pedersen, Leif T. (Danish Meteorological Institute)
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/1993/31622
id ftunivmanitoba:oai:mspace.lib.umanitoba.ca:1993/31622
record_format openpolar
spelling ftunivmanitoba:oai:mspace.lib.umanitoba.ca:1993/31622 2023-06-18T03:39:14+02:00 Radar cross section data inversion for snow-covered sea ice remote sensing Firoozy, Nariman Mojabi, Puyan (Electrical and Computer Engineering) Barber, David G. (Environment and Geography) LoVetri, Joe (Electrical and Computer Engineering) Papakyriakou, Tim (Environment and Geography) Pedersen, Leif T. (Danish Meteorological Institute) 2015 application/pdf http://hdl.handle.net/1993/31622 eng eng http://hdl.handle.net/1993/31622 open access Inverse scattering Applied electromagnetics Arctic Snow Sea Ice Retrieval doctoral thesis 2015 ftunivmanitoba 2023-06-04T17:37:30Z This thesis reports on my Ph.D. research in the area of microwave remote sensing of the Arctic. The main objective of this research is to reconstruct the dielectric profile of the snow-covered sea ice, and indirectly retrieve some of its geophysical and thermodynamic properties. To meet this objective, a nonlinear electromagnetic inverse scattering algorithm is developed that consists of forward and inverse solvers. The input to this algorithm is the normalized radar cross section (NRCS) data collected by radar systems from the snow-covered sea ice profile. The proposed inversion algorithm iteratively minimizes a discrepancy between the measured and simulated NRCS data to achieve an accurate reconstruction. Two main challenges associated with this inverse problem are its ill-posedness and its limited available scattering data. To tackle these, the utilization of appropriate regularization and weighting schemes as well as the incorporation of prior information into the inversion algorithm are employed. These include the utilization of (i) appropriate weighting factors for the misfit cost function, (ii) more sensitive NRCS data with respect to the unknown parameters, (iii) further parametrization of the profile based on the expected distribution, (iv) time-series NRCS data to better initialize the inversion process, and (v) NRCS data collected by the satellite and on-site scatterometer to be inverted simultaneously for profile reconstruction. The experimental data utilized are collected by the author in collaboration with the Centre for Earth Observation Science. These measurements are performed on (i) the artificially-grown sea ice in the Sea-ice Environmental Research Facility, located at the University of Manitoba during winter 2014, and (ii) the landfast sea ice located in the Arctic (Cambridge Bay, Nunavut) during May 2014. The measurement procedure includes NRCS data collection through an on-site C-band scatterometer and a spaceborne SAR satellite and physical sampling of the snow and sea ice. The proposed ... Doctoral or Postdoctoral Thesis Arctic Cambridge Bay Nunavut Sea ice MSpace at the University of Manitoba Arctic Cambridge Bay ENVELOPE(-105.130,-105.130,69.037,69.037) Nunavut
institution Open Polar
collection MSpace at the University of Manitoba
op_collection_id ftunivmanitoba
language English
topic Inverse scattering
Applied electromagnetics
Arctic
Snow
Sea Ice
Retrieval
spellingShingle Inverse scattering
Applied electromagnetics
Arctic
Snow
Sea Ice
Retrieval
Firoozy, Nariman
Radar cross section data inversion for snow-covered sea ice remote sensing
topic_facet Inverse scattering
Applied electromagnetics
Arctic
Snow
Sea Ice
Retrieval
description This thesis reports on my Ph.D. research in the area of microwave remote sensing of the Arctic. The main objective of this research is to reconstruct the dielectric profile of the snow-covered sea ice, and indirectly retrieve some of its geophysical and thermodynamic properties. To meet this objective, a nonlinear electromagnetic inverse scattering algorithm is developed that consists of forward and inverse solvers. The input to this algorithm is the normalized radar cross section (NRCS) data collected by radar systems from the snow-covered sea ice profile. The proposed inversion algorithm iteratively minimizes a discrepancy between the measured and simulated NRCS data to achieve an accurate reconstruction. Two main challenges associated with this inverse problem are its ill-posedness and its limited available scattering data. To tackle these, the utilization of appropriate regularization and weighting schemes as well as the incorporation of prior information into the inversion algorithm are employed. These include the utilization of (i) appropriate weighting factors for the misfit cost function, (ii) more sensitive NRCS data with respect to the unknown parameters, (iii) further parametrization of the profile based on the expected distribution, (iv) time-series NRCS data to better initialize the inversion process, and (v) NRCS data collected by the satellite and on-site scatterometer to be inverted simultaneously for profile reconstruction. The experimental data utilized are collected by the author in collaboration with the Centre for Earth Observation Science. These measurements are performed on (i) the artificially-grown sea ice in the Sea-ice Environmental Research Facility, located at the University of Manitoba during winter 2014, and (ii) the landfast sea ice located in the Arctic (Cambridge Bay, Nunavut) during May 2014. The measurement procedure includes NRCS data collection through an on-site C-band scatterometer and a spaceborne SAR satellite and physical sampling of the snow and sea ice. The proposed ...
author2 Mojabi, Puyan (Electrical and Computer Engineering) Barber, David G. (Environment and Geography)
LoVetri, Joe (Electrical and Computer Engineering) Papakyriakou, Tim (Environment and Geography) Pedersen, Leif T. (Danish Meteorological Institute)
format Doctoral or Postdoctoral Thesis
author Firoozy, Nariman
author_facet Firoozy, Nariman
author_sort Firoozy, Nariman
title Radar cross section data inversion for snow-covered sea ice remote sensing
title_short Radar cross section data inversion for snow-covered sea ice remote sensing
title_full Radar cross section data inversion for snow-covered sea ice remote sensing
title_fullStr Radar cross section data inversion for snow-covered sea ice remote sensing
title_full_unstemmed Radar cross section data inversion for snow-covered sea ice remote sensing
title_sort radar cross section data inversion for snow-covered sea ice remote sensing
publishDate 2015
url http://hdl.handle.net/1993/31622
long_lat ENVELOPE(-105.130,-105.130,69.037,69.037)
geographic Arctic
Cambridge Bay
Nunavut
geographic_facet Arctic
Cambridge Bay
Nunavut
genre Arctic
Cambridge Bay
Nunavut
Sea ice
genre_facet Arctic
Cambridge Bay
Nunavut
Sea ice
op_relation http://hdl.handle.net/1993/31622
op_rights open access
_version_ 1769004019465846784