Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context
Current research is exploring a new design concept for offshore wind turbines whereby the electrical generator in a conventional wind turbine is replaced by a large positive displacement pump that supplies pressurized sea water to a centralized hydro-electric plant. This paper investigates the poten...
Published in: | Volume 8: Ocean Renewable Energy |
---|---|
Main Authors: | , , |
Format: | Conference Object |
Language: | English |
Published: |
American Society of Mechanical Engineers (ASME)
2013
|
Subjects: | |
Online Access: | https://www.um.edu.mt/library/oar//handle/123456789/17845 https://doi.org/10.1115/OMAE2013-10714 |
id |
ftunivmalta:oai:www.um.edu.mt:123456789/17845 |
---|---|
record_format |
openpolar |
spelling |
ftunivmalta:oai:www.um.edu.mt:123456789/17845 2023-05-15T14:26:44+02:00 Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context Sant, Tonio Farrugia, Robert N. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering 2013 https://www.um.edu.mt/library/oar//handle/123456789/17845 https://doi.org/10.1115/OMAE2013-10714 en eng American Society of Mechanical Engineers (ASME) Sant, T., & Farrugia, R. N. (2013). Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production: a case study in a central Mediterranean context. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes. 1-10. https://www.um.edu.mt/library/oar//handle/123456789/17845 doi:10.1115/OMAE2013-10714 info:eu-repo/semantics/restrictedAccess The copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder. Wind power -- Mediterranean Region Oscillating positive-displacement pumps Pumping machinery Electric generators -- Mediterranean Region Wind turbines -- Mediterranean Region conferenceObject 2013 ftunivmalta https://doi.org/10.1115/OMAE2013-10714 2021-10-16T17:56:00Z Current research is exploring a new design concept for offshore wind turbines whereby the electrical generator in a conventional wind turbine is replaced by a large positive displacement pump that supplies pressurized sea water to a centralized hydro-electric plant. This paper investigates the potential of applying this concept to concurrently exploit thermocline thermal energy through deep sea water extraction in conjunction with offshore wind energy. A performance analysis is presented for a single wind turbine-driven pump supplying combined power and thermal energy by delivering pressurised deep sea water to a land-based plant consisting of a hydro-electric generator coupled to a heat exchanger. The steady-state power-wind speed characteristics are derived from a numerical thermo-fluid model. The latter integrates the hydraulic characteristics of the wind turbine-pump combination and a numerical code to simulate the heat gained/lost by deep sea water as it flows through a pipeline to shore. The model was applied to a hypothetical megawatt-scale wind turbine installed in a deep offshore site in the vicinity of the Central Mediterranean island of Malta. One year of wind speed and ambient measurements were used in conjunction with marine thermocline data to estimate the time series electricity and thermal energy yields. The total energy yield from the system was found to be significantly higher than that from a conventional offshore wind turbine generator that only produces electricity. It could also be shown that in regions where the offshore wind resource is not as rich, but where the ambient temperature is high as a result of a hotter climate, the cooling energy component that can be delivered is relatively high even at periods of low wind speeds. peer-reviewed Conference Object Arctic University of Malta: OAR@UM Volume 8: Ocean Renewable Energy |
institution |
Open Polar |
collection |
University of Malta: OAR@UM |
op_collection_id |
ftunivmalta |
language |
English |
topic |
Wind power -- Mediterranean Region Oscillating positive-displacement pumps Pumping machinery Electric generators -- Mediterranean Region Wind turbines -- Mediterranean Region |
spellingShingle |
Wind power -- Mediterranean Region Oscillating positive-displacement pumps Pumping machinery Electric generators -- Mediterranean Region Wind turbines -- Mediterranean Region Sant, Tonio Farrugia, Robert N. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context |
topic_facet |
Wind power -- Mediterranean Region Oscillating positive-displacement pumps Pumping machinery Electric generators -- Mediterranean Region Wind turbines -- Mediterranean Region |
description |
Current research is exploring a new design concept for offshore wind turbines whereby the electrical generator in a conventional wind turbine is replaced by a large positive displacement pump that supplies pressurized sea water to a centralized hydro-electric plant. This paper investigates the potential of applying this concept to concurrently exploit thermocline thermal energy through deep sea water extraction in conjunction with offshore wind energy. A performance analysis is presented for a single wind turbine-driven pump supplying combined power and thermal energy by delivering pressurised deep sea water to a land-based plant consisting of a hydro-electric generator coupled to a heat exchanger. The steady-state power-wind speed characteristics are derived from a numerical thermo-fluid model. The latter integrates the hydraulic characteristics of the wind turbine-pump combination and a numerical code to simulate the heat gained/lost by deep sea water as it flows through a pipeline to shore. The model was applied to a hypothetical megawatt-scale wind turbine installed in a deep offshore site in the vicinity of the Central Mediterranean island of Malta. One year of wind speed and ambient measurements were used in conjunction with marine thermocline data to estimate the time series electricity and thermal energy yields. The total energy yield from the system was found to be significantly higher than that from a conventional offshore wind turbine generator that only produces electricity. It could also be shown that in regions where the offshore wind resource is not as rich, but where the ambient temperature is high as a result of a hotter climate, the cooling energy component that can be delivered is relatively high even at periods of low wind speeds. peer-reviewed |
format |
Conference Object |
author |
Sant, Tonio Farrugia, Robert N. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering |
author_facet |
Sant, Tonio Farrugia, Robert N. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering |
author_sort |
Sant, Tonio |
title |
Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context |
title_short |
Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context |
title_full |
Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context |
title_fullStr |
Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context |
title_full_unstemmed |
Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central Mediterranean context |
title_sort |
performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production : a case study in a central mediterranean context |
publisher |
American Society of Mechanical Engineers (ASME) |
publishDate |
2013 |
url |
https://www.um.edu.mt/library/oar//handle/123456789/17845 https://doi.org/10.1115/OMAE2013-10714 |
genre |
Arctic |
genre_facet |
Arctic |
op_relation |
Sant, T., & Farrugia, R. N. (2013). Performance modelling of an offshore floating wind turbine-driven deep sea water extraction system for combined power and thermal energy production: a case study in a central Mediterranean context. ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes. 1-10. https://www.um.edu.mt/library/oar//handle/123456789/17845 doi:10.1115/OMAE2013-10714 |
op_rights |
info:eu-repo/semantics/restrictedAccess The copyright of this work belongs to the author(s)/publisher. The rights of this work are as defined by the appropriate Copyright Legislation or as modified by any successive legislation. Users may access this work and can make use of the information contained in accordance with the Copyright Legislation provided that the author must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the prior permission of the copyright holder. |
op_doi |
https://doi.org/10.1115/OMAE2013-10714 |
container_title |
Volume 8: Ocean Renewable Energy |
_version_ |
1766300138108616704 |