Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture

Increased CO2 atmospheric concentration is majorly contributed by the uncontrolled greenhouse gasses emission from rapid industrialisation. This phenomenon could lead to irreversible environmental problems such as climate change, global warming, ocean acidification and other environmental related is...

Full description

Bibliographic Details
Main Author: Ruhaimi, Amirul Hafiiz
Format: Thesis
Language:English
Published: 2021
Subjects:
Online Access:http://eprints.utm.my/102059/
http://eprints.utm.my/102059/1/AmirulHafiizRuhaimiMSChE2021.pdf
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:145679
id ftunivmalaysia:oai:generic.eprints.org:102059
record_format openpolar
spelling ftunivmalaysia:oai:generic.eprints.org:102059 2023-11-12T04:24:01+01:00 Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture Ruhaimi, Amirul Hafiiz 2021 application/pdf http://eprints.utm.my/102059/ http://eprints.utm.my/102059/1/AmirulHafiizRuhaimiMSChE2021.pdf http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:145679 en eng http://eprints.utm.my/102059/1/AmirulHafiizRuhaimiMSChE2021.pdf Ruhaimi, Amirul Hafiiz (2021) Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture. Masters thesis, Universiti Teknologi Malaysia, Faculty of Engineering - School of Chemical & Energy Engineering. Q Science (General) Thesis NonPeerReviewed 2021 ftunivmalaysia 2023-10-24T18:14:03Z Increased CO2 atmospheric concentration is majorly contributed by the uncontrolled greenhouse gasses emission from rapid industrialisation. This phenomenon could lead to irreversible environmental problems such as climate change, global warming, ocean acidification and other environmental related issues. Thus, to keep this under control, several approaches have been proposed and conducted. Currently, carbon capture via metal oxide solid adsorbent adsorption is one of the approaches that is progressively studied. However, commercialised metal oxide adsorbents such as magnesium oxide (MgO) and cerium oxide (CeO2) have several drawbacks such as poor structural and textural properties and low surface basicity, leading to low CO2 adsorption. Therefore, the purpose of this study was to prepare mesoporous composite CeO2-MgO (CM-BT) adsorbent via the utilisation of egg-shell membrane (ESM) as a template. The prepared adsorbents were characterised using field emission scanning electron microscopy-energy dispersion X-ray spectroscopy, transmission electron microscopy-energy dispersion X-ray spectroscopy, X-ray diffraction, nitrogen (N2) physisorption, Fourier-transform infrared spectroscopy, thermogravimetric analysis and CO2-temperature-programmed desorption (CO2-TPD). The CO2 uptake performance was evaluated at 1 atm and 300 K. It was found that mesoporous CM-BT adsorbent exhibited an enhancement in structural properties, with higher surface area (42 m2/g) and pore volume (0.185 cm3/g) compared to composite CeO2-MgO prepared via thermal decomposition (CM-TD). CM-BT exhibited a high CO2 uptake capacity of 5.7 mmol/g, which was 2.5-times higher than CM-TD. This was due to the increased surface basicity of CM-BT, which was associated with abundant adsorption sites of weak, medium and strong base-site. This study revealed that ESM bio-templating is a promising approach in synthesising mesoporous material adsorbent with enhanced adsorbent's physicochemical properties, resulting in increased CO2 uptake capacity. Thesis Ocean acidification Universiti Teknologi Malaysia: Institutional Repository
institution Open Polar
collection Universiti Teknologi Malaysia: Institutional Repository
op_collection_id ftunivmalaysia
language English
topic Q Science (General)
spellingShingle Q Science (General)
Ruhaimi, Amirul Hafiiz
Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
topic_facet Q Science (General)
description Increased CO2 atmospheric concentration is majorly contributed by the uncontrolled greenhouse gasses emission from rapid industrialisation. This phenomenon could lead to irreversible environmental problems such as climate change, global warming, ocean acidification and other environmental related issues. Thus, to keep this under control, several approaches have been proposed and conducted. Currently, carbon capture via metal oxide solid adsorbent adsorption is one of the approaches that is progressively studied. However, commercialised metal oxide adsorbents such as magnesium oxide (MgO) and cerium oxide (CeO2) have several drawbacks such as poor structural and textural properties and low surface basicity, leading to low CO2 adsorption. Therefore, the purpose of this study was to prepare mesoporous composite CeO2-MgO (CM-BT) adsorbent via the utilisation of egg-shell membrane (ESM) as a template. The prepared adsorbents were characterised using field emission scanning electron microscopy-energy dispersion X-ray spectroscopy, transmission electron microscopy-energy dispersion X-ray spectroscopy, X-ray diffraction, nitrogen (N2) physisorption, Fourier-transform infrared spectroscopy, thermogravimetric analysis and CO2-temperature-programmed desorption (CO2-TPD). The CO2 uptake performance was evaluated at 1 atm and 300 K. It was found that mesoporous CM-BT adsorbent exhibited an enhancement in structural properties, with higher surface area (42 m2/g) and pore volume (0.185 cm3/g) compared to composite CeO2-MgO prepared via thermal decomposition (CM-TD). CM-BT exhibited a high CO2 uptake capacity of 5.7 mmol/g, which was 2.5-times higher than CM-TD. This was due to the increased surface basicity of CM-BT, which was associated with abundant adsorption sites of weak, medium and strong base-site. This study revealed that ESM bio-templating is a promising approach in synthesising mesoporous material adsorbent with enhanced adsorbent's physicochemical properties, resulting in increased CO2 uptake capacity.
format Thesis
author Ruhaimi, Amirul Hafiiz
author_facet Ruhaimi, Amirul Hafiiz
author_sort Ruhaimi, Amirul Hafiiz
title Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
title_short Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
title_full Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
title_fullStr Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
title_full_unstemmed Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
title_sort synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture
publishDate 2021
url http://eprints.utm.my/102059/
http://eprints.utm.my/102059/1/AmirulHafiizRuhaimiMSChE2021.pdf
http://dms.library.utm.my:8080/vital/access/manager/Repository/vital:145679
genre Ocean acidification
genre_facet Ocean acidification
op_relation http://eprints.utm.my/102059/1/AmirulHafiizRuhaimiMSChE2021.pdf
Ruhaimi, Amirul Hafiiz (2021) Synthesis of cerium oxide-magnesium oxide adsorbent using egg-shell membrane bio-templating for carbon dioxide capture. Masters thesis, Universiti Teknologi Malaysia, Faculty of Engineering - School of Chemical & Energy Engineering.
_version_ 1782338603043520512