Elimination ideal and bivariate resultant over finite fields

17 pages International audience A new algorithm is presented for computing the largest degree invariant factor of the Sylvester matrix (with respect either to $x$ or $y$) associated to two polynomials $a$ and $b$ in $\mathbb F_q[x,y]$ which have no non-trivial common divisors. The algorithm is rando...

Full description

Bibliographic Details
Published in:Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
Main Author: Villard, Gilles
Other Authors: Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Arithmétiques des ordinateurs, méthodes formelles, génération de code (ARIC), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria)
Format: Conference Object
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-03999414
https://hal.science/hal-03999414/document
https://hal.science/hal-03999414/file/ms.pdf
https://doi.org/10.1145/3597066.3597100
Description
Summary:17 pages International audience A new algorithm is presented for computing the largest degree invariant factor of the Sylvester matrix (with respect either to $x$ or $y$) associated to two polynomials $a$ and $b$ in $\mathbb F_q[x,y]$ which have no non-trivial common divisors. The algorithm is randomized of the Monte Carlo type and requires $O((de)^{1+\epsilon}\log(q) ^{1+o(1)})$ bit operations, where $d$ an $e$ respectively bound the input degrees in $x$ and in $y$. It follows that the same complexity estimate is valid for computing: a generator of the elimination ideal $\langle a,b \rangle \cap \mathbb F_q[x]$ (or $\mathbb F_q[y]$), as soon as the polynomial system $a=b=0$ has not roots at infinity; the resultant of $a$ and $b$ when they are sufficiently generic, especially so that the Sylvester matrix has a unique non-trivial invariant factor. Our approach is to use the reduction of the problem to a problem of minimal polynomial in the quotient algebra $\mathbb F_q[x,y]/\langle a,b \rangle$. By proposing a new method based on structured polynomial matrix division for computing with the elements in the quotient, we manage to improve the best known complexity bounds.